These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38850619)

  • 1. Assessing eDNA capture method from aquatic environment to optimise recovery of human mt-eDNA.
    Dass MA; Sherman CDH; van Oorschot RAH; Tuohey K; Hartman D; Carter G; Durdle A
    Forensic Sci Int; 2024 Jun; 361():112085. PubMed ID: 38850619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective collection of long fragments of environmental DNA using larger pore size filter.
    Jo T; Murakami H; Masuda R; Minamoto T
    Sci Total Environ; 2020 Sep; 735():139462. PubMed ID: 32474249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating environmental DNA detection of a rare fish in turbid water using field and experimental approaches.
    Holmes AE; Baerwald MR; Rodzen J; Schreier BM; Mahardja B; Finger AJ
    PeerJ; 2024; 12():e16453. PubMed ID: 38188170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the use of environmental DNA (eDNA) as a tool in the detection of human DNA in water.
    Antony Dass M; Sherman CDH; Nai YH; Ellis MR; van Oorschot RAH; Durdle A
    J Forensic Sci; 2022 Nov; 67(6):2299-2307. PubMed ID: 35974469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding.
    Li J; Lawson Handley LJ; Read DS; Hänfling B
    Mol Ecol Resour; 2018 May; ():. PubMed ID: 29766663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.
    Eichmiller JJ; Miller LM; Sorensen PW
    Mol Ecol Resour; 2016 Jan; 16(1):56-68. PubMed ID: 25919417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An aquatic environmental DNA filtration system to maximize recovery potential and promote filtration approach standardization.
    DeHart HM; Gasser MT; Dixon J; Thielen P
    PeerJ; 2023; 11():e15360. PubMed ID: 37456865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Larger particle size distribution of environmental RNA compared to environmental DNA: a case study targeting the mitochondrial cytochrome b gene in zebrafish (Danio rerio) using experimental aquariums.
    Jo TS
    Naturwissenschaften; 2024 Mar; 111(2):18. PubMed ID: 38502308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing an eDNA protocol for estuarine environments: Balancing sensitivity, cost and time.
    Sanches TM; Schreier AD
    PLoS One; 2020; 15(5):e0233522. PubMed ID: 32437479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes.
    Zhang S; Lu Q; Wang Y; Wang X; Zhao J; Yao M
    Mol Ecol Resour; 2020 Jan; 20(1):242-255. PubMed ID: 31625686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle size influences decay rates of environmental DNA in aquatic systems.
    Brandão-Dias PFP; Hallack DMC; Snyder ED; Tank JL; Bolster D; Volponi S; Shogren AJ; Lamberti GA; Bibby K; Egan SP
    Mol Ecol Resour; 2023 May; 23(4):756-770. PubMed ID: 36633071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The particle size distribution of environmental DNA varies with species and degradation.
    Zhao B; van Bodegom PM; Trimbos K
    Sci Total Environ; 2021 Nov; 797():149175. PubMed ID: 34303977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish.
    Piggott MP
    Ecol Evol; 2016 May; 6(9):2739-50. PubMed ID: 27066248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta-analyses.
    Jo T; Minamoto T
    Mol Ecol Resour; 2021 Jul; 21(5):1490-1503. PubMed ID: 33580561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle Size Distribution of Environmental DNA from the Nuclei of Marine Fish.
    Jo T; Arimoto M; Murakami H; Masuda R; Minamoto T
    Environ Sci Technol; 2019 Aug; 53(16):9947-9956. PubMed ID: 31328917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Evaluation of Common Materials as Passive Samplers of Environmental DNA.
    Chen X; Kong Y; Zhang S; Zhao J; Li S; Yao M
    Environ Sci Technol; 2022 Aug; 56(15):10798-10807. PubMed ID: 35856738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms.
    Mächler E; Osathanunkul M; Altermatt F
    PLoS One; 2018; 13(4):e0195529. PubMed ID: 29624607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA.
    Kumar G; Eble JE; Gaither MR
    Mol Ecol Resour; 2020 Jan; 20(1):29-39. PubMed ID: 31633859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental DNA (eDNA) removal rates in streams differ by particle size under varying substrate and light conditions.
    Snyder ED; Tank JL; Brandão-Dias PFP; Bibby K; Shogren AJ; Bivins AW; Peters B; Curtis EM; Bolster D; Egan SP; Lamberti GA
    Sci Total Environ; 2023 Dec; 903():166469. PubMed ID: 37633388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive eDNA sampling facilitates biodiversity monitoring and rare species detection.
    Chen X; Li S; Zhao J; Yao M
    Environ Int; 2024 May; 187():108706. PubMed ID: 38696978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.