These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38850736)

  • 1. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor.
    Parnas M; McLane-Svoboda AK; Cox E; McLane-Svoboda SB; Sanchez SW; Farnum A; Tundo A; Lefevre N; Miller S; Neeb E; Contag CH; Saha D
    Biosens Bioelectron; 2024 Oct; 261():116466. PubMed ID: 38850736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro cultured lung cancer cells are not suitable for animal-based breath biomarker detection.
    Schallschmidt K; Becker R; Zwaka H; Menzel R; Johnen D; Fischer-Tenhagen C; Rolff J; Nehls I
    J Breath Res; 2015 Feb; 9(2):027103. PubMed ID: 25667342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Medical diagnosis by breath analysis: odor sensors].
    Pajot-Augy É
    Med Sci (Paris); 2019 Feb; 35(2):123-131. PubMed ID: 30774079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exhaled Breath Analysis for Monitoring Response to Treatment in Advanced Lung Cancer.
    Nardi-Agmon I; Abud-Hawa M; Liran O; Gai-Mor N; Ilouze M; Onn A; Bar J; Shlomi D; Haick H; Peled N
    J Thorac Oncol; 2016 Jun; 11(6):827-37. PubMed ID: 26968885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural representation of olfactory mixtures in the honeybee antennal lobe.
    Deisig N; Giurfa M; Lachnit H; Sandoz JC
    Eur J Neurosci; 2006 Aug; 24(4):1161-74. PubMed ID: 16930442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening.
    Zhong X; Li D; Du W; Yan M; Wang Y; Huo D; Hou C
    Anal Bioanal Chem; 2018 Jun; 410(16):3671-3681. PubMed ID: 29654337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath.
    Larracy R; Phinyomark A; Scheme E
    J Breath Res; 2022 Mar; 16(2):. PubMed ID: 35294929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urinary volatile compounds as biomarkers for lung cancer: a proof of principle study using odor signatures in mouse models of lung cancer.
    Matsumura K; Opiekun M; Oka H; Vachani A; Albelda SM; Yamazaki K; Beauchamp GK
    PLoS One; 2010 Jan; 5(1):e8819. PubMed ID: 20111698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.
    MaBouDi H; Shimazaki H; Giurfa M; Chittka L
    PLoS Comput Biol; 2017 Jun; 13(6):e1005551. PubMed ID: 28640825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation.
    Nowotny T; Stierle JS; Galizia CG; Szyszka P
    Brain Res; 2013 Nov; 1536():119-34. PubMed ID: 23743263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines.
    Wang Y; Hu Y; Wang D; Yu K; Wang L; Zou Y; Zhao C; Zhang X; Wang P; Ying K
    Cancer Biomark; 2012; 11(4):129-37. PubMed ID: 23144150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs.
    Guohua H; Hongyang L; Zhiming J; Danhua Z; Haifang W
    Biosens Bioelectron; 2017 Nov; 97():184-195. PubMed ID: 28599178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of odor representation in the honeybee antennal lobe.
    Wang S; Zhang S; Sato K; Srinivasan MV
    J Insect Physiol; 2005 Nov; 51(11):1244-54. PubMed ID: 16183074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroantennogram reveals a strong correlation between the passion of honeybee and the properties of the volatile.
    Zhao J; Li Z; Zhao Z; Yang Y; Yan S
    Brain Behav; 2020 Jun; 10(6):e01603. PubMed ID: 32270603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study.
    Westhoff M; Litterst P; Freitag L; Urfer W; Bader S; Baumbach JI
    Thorax; 2009 Sep; 64(9):744-8. PubMed ID: 19158121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel processing via a dual olfactory pathway in the honeybee.
    Brill MF; Rosenbaum T; Reus I; Kleineidam CJ; Nawrot MP; Rössler W
    J Neurosci; 2013 Feb; 33(6):2443-56. PubMed ID: 23392673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera).
    Meyer A; Galizia CG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Feb; 198(2):159-71. PubMed ID: 22083110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiresistive Sensor Array with Nanostructured Interfaces for Detection of Human Breaths with Simulated Lung Cancer Breath VOCs.
    Shang G; Dinh D; Mercer T; Yan S; Wang S; Malaei B; Luo J; Lu S; Zhong CJ
    ACS Sens; 2023 Mar; 8(3):1328-1338. PubMed ID: 36883832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing insect olfactory neural circuits for detecting and discriminating human cancers.
    Farnum A; Parnas M; Hoque Apu E; Cox E; Lefevre N; Contag CH; Saha D
    Biosens Bioelectron; 2023 Jan; 219():114814. PubMed ID: 36327558
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.