These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 38850902)
1. A new strategy for PET depolymerization: Application of bimetallic MOF-74 as a selective catalyst. Baluk MA; Trzebiatowska PJ; Pieczyńska A; Makowski D; Kroczewska M; Łuczak J; Zaleska-Medynska A J Environ Manage; 2024 Jul; 363():121360. PubMed ID: 38850902 [TBL] [Abstract][Full Text] [Related]
2. Dual-porous ZIF-8 heterogeneous catalysts with increased reaction sites for efficient PET glycolysis. Han N; Lee K; Lee J; Jo JH; An EJ; Lee G; Chi WS; Lee C Chemosphere; 2024 Sep; 364():143187. PubMed ID: 39187024 [TBL] [Abstract][Full Text] [Related]
4. Recycling of waste PET into useful textile auxiliaries. Shukla SR; Harad AM; Jawale LS Waste Manag; 2008; 28(1):51-6. PubMed ID: 17207616 [TBL] [Abstract][Full Text] [Related]
5. Monomer production from supercritical ethanol depolymerization of PET plastic waste using Ni-ZnO/Al Yang Y; Sun H; Liu Z; Wang H; Zheng R; Kanchanatip E; Yan M Waste Manag; 2024 Dec; 190():318-328. PubMed ID: 39383572 [TBL] [Abstract][Full Text] [Related]
6. Optimization of PET depolymerization for enhanced terephthalic acid recovery from commercial PET and post consumer PET-bottles via low-temperature alkaline hydrolysis. Teke S; Saud S; Bhattarai RM; Ali A; Nguyen L; Denra A; Nguyen DB; Mok YS Chemosphere; 2024 Oct; 365():143391. PubMed ID: 39307467 [TBL] [Abstract][Full Text] [Related]
7. Sustainable PET Waste Recycling: Labels from PET Water Bottles Used as a Catalyst for the Chemical Recycling of the Same Bottles. Enayati M; Mohammadi S; Bouldo MG ACS Sustain Chem Eng; 2023 Nov; 11(46):16618-16626. PubMed ID: 38028403 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast Simultaneous and Selective Depolymerization of Heterogeneous Streams of Polyethylene Terephthalate and Polycarbonate: Towards Industrially Feasible Chemical Recycling. Rubio Arias JJ; Barnard E; Thielemans W ChemSusChem; 2022 Aug; 15(15):e202200625. PubMed ID: 35699250 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Yang W; Liu R; Li C; Song Y; Hu C Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688 [TBL] [Abstract][Full Text] [Related]
10. Metal-oxide-doped silica nanoparticles for the catalytic glycolysis of polyethylene terephthalate. Imran M; Lee KG; Imtiaz Q; Kim BK; Han M; Cho BG; Kim DH J Nanosci Nanotechnol; 2011 Jan; 11(1):824-8. PubMed ID: 21446554 [TBL] [Abstract][Full Text] [Related]
11. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide. Mohammadi S; Bouldo MG; Enayati M ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081 [TBL] [Abstract][Full Text] [Related]
12. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET. Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730 [TBL] [Abstract][Full Text] [Related]
13. Improving the Sustainability of Catalytic Glycolysis of Complex PET Waste through Bio-Solvolysis. Amundarain I; López-Montenegro S; Fulgencio-Medrano L; Leivar J; Iruskieta A; Asueta A; Miguel-Fernández R; Arnaiz S; Pereda-Ayo B Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201807 [TBL] [Abstract][Full Text] [Related]
14. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator. Genta M; Iwaya T; Sasaki M; Goto M Waste Manag; 2007; 27(9):1167-77. PubMed ID: 16914302 [TBL] [Abstract][Full Text] [Related]
15. Novel efficient enzymatic synthesis of the key-reaction intermediate of PET depolymerization, mono(2-hydroxyethyl terephthalate) - MHET. Eugenio EQ; Campisano ISP; Dias AG; Castro AM; Coelho MAZ; Langone MAP J Biotechnol; 2022 Nov; 358():102-110. PubMed ID: 36063976 [TBL] [Abstract][Full Text] [Related]
16. One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate). Park G; Bartolome L; Lee KG; Lee SJ; Kim DH; Park TJ Nanoscale; 2012 Jul; 4(13):3879-85. PubMed ID: 22592889 [TBL] [Abstract][Full Text] [Related]
17. Progress in the catalytic glycolysis of polyethylene terephthalate. Xin J; Zhang Q; Huang J; Huang R; Jaffery QZ; Yan D; Zhou Q; Xu J; Lu X J Environ Manage; 2021 Oct; 296():113267. PubMed ID: 34271351 [TBL] [Abstract][Full Text] [Related]
18. Catalytic Amounts of an Antibacterial Monomer Enable the Upcycling of Poly(Ethylene Terephthalate) Waste. Zhang H; Fang T; Yao X; Li X; Zhu W Adv Mater; 2023 May; 35(20):e2210758. PubMed ID: 36809549 [TBL] [Abstract][Full Text] [Related]
19. Development of reusable Ni/γ-Al Yan M; Yang Y; Chen F; Hantoko D; Pariatamby A; Kanchanatip E Environ Sci Pollut Res Int; 2023 Oct; 30(46):102560-102573. PubMed ID: 37668784 [TBL] [Abstract][Full Text] [Related]
20. Chemical Recycling of PET Using Catalysts from Layered Double Hydroxides: Effect of Synthesis Method and Mg-Fe Biocompatible Metals. Arcanjo AP; Liborio DO; Arias S; Carvalho FR; Silva JP; Ribeiro BD; Dias ML; Castro AM; Fréty R; Barbosa CMBM; Pacheco JGA Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]