These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38850909)

  • 1. Mechanochemical recycling of cellulose multilayer carton packages to produce micro and nanocellulose from the perspective of techno-economic and environmental analysis.
    Borges R; Brondi M; Elias AM; Farinas CS; Ribeiro C
    J Environ Manage; 2024 Jul; 363():121254. PubMed ID: 38850909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reuse of used paper egg carton boxes as a source to produce hybrid AgNPs- carboxyl nanocellulose through bio-synthesis and its application in active food packaging.
    Raghav GR; Nagarajan KJ; Palaninatharaja M; Karthic M; Kumar RA; Ganesh MA
    Int J Biol Macromol; 2023 Sep; 249():126119. PubMed ID: 37541473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of activation energy of pyrolysis of carton packaging wastes and its pure components using thermogravimetry.
    Alvarenga LM; Xavier TP; Barrozo MA; Bacelos MS; Lira TS
    Waste Manag; 2016 Jul; 53():68-75. PubMed ID: 27156364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyst-Free Mechanochemical Recycling of Biobased Epoxy with Cellulose Nanocrystals.
    Yue L; Ke K; Amirkhosravi M; Gray TG; Manas-Zloczower I
    ACS Appl Bio Mater; 2021 May; 4(5):4176-4183. PubMed ID: 35006830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing and developing a continuous separation system for the wet process separation of aluminum and polyethylene in aseptic composite packaging waste.
    Yan D; Peng Z; Liu Y; Li L; Huang Q; Xie M; Wang Q
    Waste Manag; 2015 Jan; 35():21-8. PubMed ID: 25458854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upcycling polyamide containing post-consumer Tetra Pak carton packaging to valuable chemicals and recyclable polymer.
    Chen X; Luo Y; Bai X
    Waste Manag; 2021 Jul; 131():423-432. PubMed ID: 34252692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Bacillus subtilis spores on aluminum and polyethylene preformed cartons by UV-excimer laser irradiation.
    Warriner K; Rysstad G; Murden A; Rumsby P; Thomas D; Waites WM
    J Food Prot; 2000 Jun; 63(6):753-7. PubMed ID: 10852569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel process for the complete recycling of exhausted coffee capsules with a fully circular approach: Design of the industrial plant and Techno-Economic analysis of the process.
    Nanni A; Colonna M; Liberati G; Bonoli A
    Waste Manag; 2024 Feb; 174():114-125. PubMed ID: 38041980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended producers' responsibility schemes for used beverage carton recycling.
    Agamuthu P; Visvanathan C
    Waste Manag Res; 2014 Jan; 32(1):1-3. PubMed ID: 24396036
    [No Abstract]   [Full Text] [Related]  

  • 10. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging.
    Cervantes-Reyes A; Núñez-Pineda A; Barrera-Díaz C; Varela-Guerrero V; Martínez-Barrera G; Cuevas-Yañez E
    Waste Manag; 2015 Apr; 38():61-4. PubMed ID: 25681948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste.
    Moreno DDP; Saron C
    Waste Manag Res; 2018 Aug; 36(8):729-736. PubMed ID: 29871552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.
    Cinelli P; Schmid M; Bugnicourt E; Coltelli MB; Lazzeri A
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Recovery from Waste Aluminum-Plastic Composites Treated with Alkaline Solution.
    Buryakovskaya OA; Vlaskin MS
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications.
    Gupta GK; Shukla P
    Front Chem; 2020; 8():601256. PubMed ID: 33425858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications.
    Nguyen HL; Tran TH; Hao LT; Jeon H; Koo JM; Shin G; Hwang DS; Hwang SY; Park J; Oh DX
    Carbohydr Polym; 2021 Nov; 271():118421. PubMed ID: 34364562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans.
    Kremser K; Gerl P; Pellis A; Guebitz GM
    Waste Manag; 2021 Feb; 120():16-24. PubMed ID: 33279823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum recovery as a product with high added value using aluminum hazardous waste.
    David E; Kopac J
    J Hazard Mater; 2013 Oct; 261():316-24. PubMed ID: 23959251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation.
    Wu Q; Ding C; Wang B; Rong L; Mao Z; Feng X
    Int J Biol Macromol; 2024 May; 267(Pt 2):131461. PubMed ID: 38599424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.