BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38850932)

  • 1. Automated identification of pesticide mixtures via machine learning analysis of TLC-SERS spectra.
    Fang G; Hasi W; Lin X; Han S
    J Hazard Mater; 2024 Aug; 474():134814. PubMed ID: 38850932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze Surface-Enhanced Raman Scattering Coupled with Thin-Layer Chromatography: Pesticide Detection and Quantification Case.
    Fukunaga Y; Okada T
    Anal Chem; 2022 Oct; 94(39):13507-13515. PubMed ID: 36136892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex Sensing of Complex Mixtures by Machine Vision Analysis of TLC-SERS Images.
    Hou X; Sivashanmugan K; Zhao Y; Zhang B; Wang AX
    Sens Actuators B Chem; 2022 Apr; 357():. PubMed ID: 35221529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method.
    Hu B; Sun DW; Pu H; Wei Q
    Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of Thin-Layer Chromatography Tandem with Surface-Enhanced Raman Spectroscopy for Detection of Analytes in Mixture Samples.
    Zhang M; Yu Q; Guo J; Wu B; Kong X
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea.
    Li H; Luo X; Haruna SA; Zareef M; Chen Q; Ding Z; Yan Y
    Food Chem; 2023 Dec; 428():136798. PubMed ID: 37423106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing.
    Xia D; Jiang P; Cai Z; Zhou R; Tu B; Gao N; Chang G; He H; He Y
    Mikrochim Acta; 2022 May; 189(6):232. PubMed ID: 35614151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel metastable state nanoparticle-enhanced Raman spectroscopy coupled with thin layer chromatography for determination of multiple pesticides.
    Kang Y; Wu T; Chen W; Li L; Du Y
    Food Chem; 2019 Jan; 270():494-501. PubMed ID: 30174078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A separable surface-enhanced Raman scattering substrate modified with MIL-101 for detection of overlapping and invisible compounds after thin-layer chromatography development.
    Zhang BB; Shi Y; Chen H; Zhu QX; Lu F; Li YW
    Anal Chim Acta; 2018 Jan; 997():35-43. PubMed ID: 29149992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering.
    Zhu J; Sharma AS; Xu J; Xu Y; Jiao T; Ouyang Q; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118994. PubMed ID: 33038862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new integrated TLC/MU-ATR/SERS advanced approach for the identification of trace amounts of dyes in mixtures.
    Sciutto G; Prati S; Bonacini I; Litti L; Meneghetti M; Mazzeo R
    Anal Chim Acta; 2017 Oct; 991():104-112. PubMed ID: 29031292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography.
    Shen Z; Fan Q; Yu Q; Wang R; Wang H; Kong X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119037. PubMed ID: 33086143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin layer chromatography coupled with surface enhanced Raman scattering for rapid separation and on-site detection of multi-components.
    Han C; Wang Q; Yao Y; Zhang Q; Huang J; Zhang H; Qu L
    J Chromatogr A; 2023 Sep; 1706():464217. PubMed ID: 37517317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Detection of Malathion, Phoxim and Thiram on Orange Surfaces Using Ag Nanoparticle Modified PDMS as Surface-Enhanced Raman Spectroscopy Substrate.
    Zhai W; Cao M; Xiao Z; Li D; Wang M
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water.
    Fateixa S; Raposo M; Nogueira HIS; Trindade T
    Talanta; 2018 May; 182():558-566. PubMed ID: 29501193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis.
    Tan A; Zhao Y; Sivashanmugan K; Squire K; Wang AX
    Food Control; 2019 Sep; 103():111-118. PubMed ID: 31827314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.
    István K; Keresztury G; Szép A
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection.
    Hu J; Zou Y; Sun B; Yu X; Shang Z; Huang J; Jin S; Liang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120366. PubMed ID: 34509888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The time-resolved D-SERS vibrational spectra of pesticide thiram.
    Li P; Liu H; Yang L; Liu J
    Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of sildenafil adulterated in herbal products using thin layer chromatography combined with surface enhanced Raman spectroscopy: "Double coffee-ring effect" based enhancement.
    Minh DTC; Thi LA; Huyen NTT; Van Vu L; Anh NTK; Ha PTT
    J Pharm Biomed Anal; 2019 Sep; 174():340-347. PubMed ID: 31202876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.