BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38851128)

  • 21. Monitoring transient groundwater fluxes using the Finite Volume Point Dilution Method.
    Jamin P; Brouyère S
    J Contam Hydrol; 2018 Nov; 218():10-18. PubMed ID: 30195886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of contaminant mass discharge from point sources in aquitard/aquifer systems based on vertical concentration profiles and 3D modeling.
    Mosthaf K; Rosenberg L; Broholm MM; Fjordbøge AS; Lilbæk G; Christensen AG; Bjerg PL
    J Contam Hydrol; 2024 Jan; 260():104281. PubMed ID: 38061244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The dioxin/POPs legacy of pesticide production in Hamburg: part 2--waste deposits and remediation of Georgswerder landfill.
    Götz R; Sokollek V; Weber R
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):1925-36. PubMed ID: 22777611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM
    J Contam Hydrol; 2017 Sep; 204():90-101. PubMed ID: 28797670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
    Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S
    J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geochemical detection of carbon dioxide in dilute aquifers.
    Carroll S; Hao Y; Aines R
    Geochem Trans; 2009 Mar; 10():4. PubMed ID: 19323832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen.
    Wycisk P; Stollberg R; Neumann C; Gossel W; Weiss H; Weber R
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):1907-17. PubMed ID: 23532510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking the nitrogen cycle in a vulnerable alluvial system using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia.
    Marković T; Karlović I; Orlić S; Kajan K; Smith AC
    Sci Total Environ; 2022 Dec; 853():158632. PubMed ID: 36087668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrological buffering during groundwater acidification in rapidly industrializing alluvial plains.
    Xu B; Wang G; Yang Q; Zheng Y
    J Contam Hydrol; 2018 Nov; 218():19-33. PubMed ID: 30213456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan.
    Ni CF; Li WC; Hsu SM; Lee IH; Lin CP
    Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of electrical tomography methods to determinate the extension and main migration routes of uncontrolled landfill leachates in fractured areas.
    Casado I; Mahjoub H; Lovera R; Fernández J; Casas A
    Sci Total Environ; 2015 Feb; 506-507():546-53. PubMed ID: 25433381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations.
    Batlle-Aguilar J; Morasch B; Hunkeler D; Brouyère S
    Ground Water; 2014; 52(3):388-98. PubMed ID: 23721190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.
    Barns GL; Thornton SF; Wilson RD
    J Contam Hydrol; 2015 Jan; 172():84-99. PubMed ID: 25478669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental study for visualizing CO
    Joun WT; Lee KK
    J Environ Manage; 2024 Apr; 357():120814. PubMed ID: 38581896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mobility and sorption assessment of selected pesticides in alluvial aquifer.
    Živančev NV; Kovačević SR; Radović TT; Radišić MM; Dimkić MA
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28725-28736. PubMed ID: 31376123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of a contaminated site (the San Giuliano landfill, Venice, Italy) on the interaction between water bodies in a coastal aquifer system.
    Critto A; Zuppi GM; Carlon C; Marcomini A
    Ann Chim; 2004 Apr; 94(4):303-14. PubMed ID: 15242095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.