These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38851327)

  • 41. Assessing the Biodegradability of Tire Tread Particles and Influencing Factors.
    Nielsen AF; Polesel F; Ahonen T; Palmqvist A; Baun A; Hartmann NB
    Environ Toxicol Chem; 2024 Jan; 43(1):31-41. PubMed ID: 37753867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing biodegradation of roadway particles via complementary mass spectrometry and NMR analyses.
    Calarnou L; Traïkia M; Leremboure M; Malosse L; Dronet S; Delort AM; Besse-Hoggan P; Eyheraguibel B
    Sci Total Environ; 2023 Nov; 900():165698. PubMed ID: 37499838
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution patterns of rubber tire-related chemicals with particle size in road and indoor parking lot dust.
    Deng C; Huang J; Qi Y; Chen D; Huang W
    Sci Total Environ; 2022 Oct; 844():157144. PubMed ID: 35798097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of tire-road wear particles (TRWPs) and road pavement wear particles (RPWPs) generated through a novel tire abrasion simulator based on real road pavement conditions.
    Bae SH; Chae E; Park YS; Lee SW; Yun JH; Choi SS
    Sci Total Environ; 2024 Sep; 944():173948. PubMed ID: 38880134
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid generation of aged tire-wear particles using dry-, wet-, and cryo-milling for ecotoxicity testing.
    Shin H; Jeong S; Hong J; Wi E; Park E; Yang SI; Kwon JT; Lee H; Lee J; Kim Y
    Environ Pollut; 2023 Aug; 330():121787. PubMed ID: 37156438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene-Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires.
    Araujo-Morera J; Hernández Santana M; Verdejo R; López-Manchado MA
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of tire wear markers in soil samples and their distribution in a roadside soil.
    Müller A; Kocher B; Altmann K; Braun U
    Chemosphere; 2022 May; 294():133653. PubMed ID: 35051522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry.
    Chae E; Choi SS
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimation of emission of tire wear particles (TWPs) in Korea.
    Lee H; Ju M; Kim Y
    Waste Manag; 2020 May; 108():154-159. PubMed ID: 32353780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Toxic Tire Wear Compounds (6PPD-Q and 4-ADPA) Detected in Airborne Particulate Matter Along a Highway in Mississippi, USA.
    Olubusoye BS; Cizdziel JV; Bee M; Moore MT; Pineda M; Yargeau V; Bennett ER
    Bull Environ Contam Toxicol; 2023 Nov; 111(6):68. PubMed ID: 37940736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toxicological effects of micronized tire crumb rubber on mummichog (Fundulus heteroclitus) and fathead minnow (Pimephales promelas).
    LaPlaca SB; van den Hurk P
    Ecotoxicology; 2020 Jul; 29(5):524-534. PubMed ID: 32342294
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxic effects of environmentally persistent free radicals (EPFRs) on the surface of tire wear particles on freshwater biofilms: The alleviating role after sewage-incubation-aging.
    Li K; Kong D; Xiu X; Hao W; Xu D
    Chemosphere; 2023 Nov; 342():140179. PubMed ID: 37714474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chronic toxicity of tire crumb rubber particles to mummichog (Fundulus heteroclitus) in episodic exposures.
    LaPlaca SB; Rice CD; van den Hurk P
    Sci Total Environ; 2022 Nov; 846():157447. PubMed ID: 35853528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of tire wear airstrip particles (TWAP).
    Spanheimer V; Katrakova-Krüger D
    Sci Rep; 2022 Sep; 12(1):15841. PubMed ID: 36151229
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved Heat Dissipation of NR/SBR-Based Tire Tread Compounds via Hybrid Fillers of Multi-Walled Carbon Nanotube and Carbon Black.
    Kodal M; Yazıcı Çakır N; Yıldırım R; Karakaya N; Özkoç G
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abundance and distribution of tire and road wear particles in the Seine River, France.
    Barber TR; Claes S; Ribeiro F; Dillon AE; More SL; Thornton S; Unice KM; Weyrauch S; Reemtsma T
    Sci Total Environ; 2024 Feb; 913():169633. PubMed ID: 38157910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The analysis of tire rubber traces collected after braking incidents using Pyrolysis-GasChromatography/Mass Spectrometry.
    Sarkissian G
    J Forensic Sci; 2007 Sep; 52(5):1050-6. PubMed ID: 17767653
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plastic in the air?! - Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air.
    Goßmann I; Süßmuth R; Scholz-Böttcher BM
    Sci Total Environ; 2022 Aug; 832():155008. PubMed ID: 35381237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Black microplastics in the environment: Origin, transport and risk of tire wear particles].
    Chen Y; Liu J; Zhang YX; Li JY; Li GJ
    Ying Yong Sheng Tai Xue Bao; 2022 Aug; 33(8):2260-2270. PubMed ID: 36043835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characteristics of particulate matter from asphalt pavement and tire of a moving bus through driving tests in city road and proving ground.
    Chae E; Bae SH; Lee SW; Yun JH; Choi SS
    Environ Pollut; 2024 Mar; 344():123336. PubMed ID: 38211876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.