These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38851367)

  • 41. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water.
    Hu Y; Chen X; Yang K; Lin D
    Sci Total Environ; 2018 Mar; 618():838-846. PubMed ID: 29054648
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation.
    Yuan L; Zhang F; Qi X; Yang Y; Yan C; Jiang J; Deng J
    J Nanobiotechnology; 2018 Jul; 16(1):55. PubMed ID: 29996877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fine tuning the pH triggers the enantiorecognition of underivatized amino acids by silver nanoparticles: a novel approach based on the focused use of solution equilibria.
    Contino A; Maccarrone G; Zimbone M; Musumeci P; Calcagno L; Pannitteri S
    J Colloid Interface Sci; 2015 Apr; 443():30-5. PubMed ID: 25528532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Particle surface functionalization affects mechanism of endocytosis and adverse effects of silver nanoparticles in mammalian kidney cells.
    Beus M; Pongrac IM; Capjak I; Ilić K; Vrček E; Ćurlin M; Milić M; Čermak AMM; Pavičić I
    J Appl Toxicol; 2023 Mar; 43(3):416-430. PubMed ID: 36065485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Contribution of Particle Size and Surface Coating of Silver Nanoparticles to Its Toxicity in Marine Diatom Skeletonema costatum].
    Huang J; Yi J; Qiang LY; Cheng JP
    Huan Jing Ke Xue; 2016 May; 37(5):1968-77. PubMed ID: 27506055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles.
    Orlowski P; Krzyzowska M; Zdanowski R; Winnicka A; Nowakowska J; Stankiewicz W; Tomaszewska E; Celichowski G; Grobelny J
    Toxicol In Vitro; 2013 Sep; 27(6):1798-808. PubMed ID: 23727252
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytotoxic impact of bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) and silver nitrate (AgNO
    Iori V; Muzzini VG; Venditti I; Casentini B; Iannelli MA
    Environ Sci Pollut Res Int; 2023 Nov; 30(54):116175-116185. PubMed ID: 37907823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy.
    Han JW; Gurunathan S; Choi YJ; Kim JH
    Int J Nanomedicine; 2017; 12():7529-7549. PubMed ID: 29066898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles.
    Afshinnia K; Marrone B; Baalousha M
    Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation.
    Shannahan JH; Podila R; Brown JM
    Int J Nanomedicine; 2015; 10():6509-21. PubMed ID: 26508856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Size- and Shape-Dependent Interactions of Lipid-Coated Silver Nanoparticles: An Improved Mechanistic Understanding through Model Cell Membranes and
    Nieves Lira C; Carpenter AP; Baio JE; Harper BJ; Harper SL; Mackiewicz MR
    Chem Res Toxicol; 2024 Jun; 37(6):968-980. PubMed ID: 38743843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity.
    Silva T; Pokhrel LR; Dubey B; Tolaymat TM; Maier KJ; Liu X
    Sci Total Environ; 2014 Jan; 468-469():968-76. PubMed ID: 24091120
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa.
    Zou X; Li P; Lou J; Zhang H
    Aquat Toxicol; 2017 Aug; 189():150-158. PubMed ID: 28644992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurotoxicity of silver nanoparticles stabilized with different coating agents: In vitro response of neuronal precursor cells.
    Pavičić I; Milić M; Pongrac IM; Brkić Ahmed L; Matijević Glavan T; Ilić K; Zapletal E; Ćurlin M; Mitrečić D; Vinković Vrček I
    Food Chem Toxicol; 2020 Feb; 136():110935. PubMed ID: 31693913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of an in silico knowledge discovery approach to determine mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo.
    Mao BH; Luo YK; Wang BJ; Chen CW; Cheng FY; Lee YH; Yan SJ; Wang YJ
    Part Fibre Toxicol; 2022 Jan; 19(1):6. PubMed ID: 35031062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line.
    Bastos V; Ferreira de Oliveira JM; Brown D; Jonhston H; Malheiro E; Daniel-da-Silva AL; Duarte IF; Santos C; Oliveira H
    Toxicol Lett; 2016 May; 249():29-41. PubMed ID: 27021274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization.
    Sun X; Shi J; Zou X; Wang C; Yang Y; Zhang H
    J Hazard Mater; 2016 Nov; 317():570-578. PubMed ID: 27344258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes.
    Garcia-Velasco N; Irizar A; Urionabarrenetxea E; Scott-Fordsmand JJ; Soto M
    Ecotoxicol Environ Saf; 2019 Nov; 183():109545. PubMed ID: 31446174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.