These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38851379)

  • 61. High-intensity Intermittent Training Enhances Spatial Memory and Hippocampal Neurogenesis Associated with BDNF Signaling in Rats.
    Okamoto M; Mizuuchi D; Omura K; Lee M; Oharazawa A; Yook JS; Inoue K; Soya H
    Cereb Cortex; 2021 Jul; 31(9):4386-4397. PubMed ID: 33982757
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Motor cortical excitability and plasticity in patients with neurofibromatosis type 1.
    Castricum J; Tulen JHM; Taal W; Ottenhoff MJ; Kushner SA; Elgersma Y
    Clin Neurophysiol; 2020 Nov; 131(11):2673-2681. PubMed ID: 32977190
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex?
    Laakso I; Mikkonen M; Koyama S; Hirata A; Tanaka S
    Sci Rep; 2019 Jan; 9(1):626. PubMed ID: 30679770
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transcranial near-infrared stimulation may increase cortical excitability recorded in humans.
    Song P; Han T; Lin H; Li S; Huang Q; Dai X; Wang R; Wang Y
    Brain Res Bull; 2020 Feb; 155():155-158. PubMed ID: 31837460
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phase Synchronicity of μ-Rhythm Determines Efficacy of Interhemispheric Communication Between Human Motor Cortices.
    Stefanou MI; Desideri D; Belardinelli P; Zrenner C; Ziemann U
    J Neurosci; 2018 Dec; 38(49):10525-10534. PubMed ID: 30355634
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparative study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation duration.
    Haeckert J; Lasser C; Pross B; Hasan A; Strube W
    Physiol Rep; 2020 Oct; 8(19):e14595. PubMed ID: 32996722
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation.
    Heide G; Witte OW; Ziemann U
    Exp Brain Res; 2006 May; 171(1):26-34. PubMed ID: 16307247
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.
    Neva JL; Vesia M; Singh AM; Staines WR
    Brain Res; 2015 Aug; 1618():61-74. PubMed ID: 26032743
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach.
    Pellicciari MC; Brignani D; Miniussi C
    Neuroimage; 2013 Dec; 83():569-80. PubMed ID: 23845429
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex.
    Agboada D; Mosayebi Samani M; Jamil A; Kuo MF; Nitsche MA
    Sci Rep; 2019 Dec; 9(1):18185. PubMed ID: 31796827
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability.
    Moret B; Donato R; Nucci M; Cona G; Campana G
    Sci Rep; 2019 Oct; 9(1):15150. PubMed ID: 31641235
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.
    Nettekoven C; Volz LJ; Kutscha M; Pool EM; Rehme AK; Eickhoff SB; Fink GR; Grefkes C
    J Neurosci; 2014 May; 34(20):6849-59. PubMed ID: 24828639
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of primary motor cortex excitability changes after quadripulse transcranial magnetic stimulation on kinesthetic sensitivity: A preliminary study.
    Okawada M; Kaneko F; Shibata E
    Neurosci Lett; 2021 Jan; 741():135483. PubMed ID: 33161107
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials.
    Sato D; Yamashiro K; Onishi H; Yasuhiro B; Shimoyama Y; Maruyama A
    J Neurophysiol; 2015 Feb; 113(3):822-33. PubMed ID: 25376780
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phase of sensorimotor μ-oscillation modulates cortical responses to transcranial magnetic stimulation of the human motor cortex.
    Desideri D; Zrenner C; Ziemann U; Belardinelli P
    J Physiol; 2019 Dec; 597(23):5671-5686. PubMed ID: 31535388
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Older Adults Differentially Modulate Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Inhibition during Maximal Single-joint Exercise.
    Opie GM; Otieno LA; Pourmajidian M; Semmler JG; Sidhu SK
    Neuroscience; 2020 Jan; 425():181-193. PubMed ID: 31809730
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Effects of Monophasic Anodal Transcranial Pulsed Current Stimulation on Corticospinal Excitability and Motor Performance in Healthy Young Adults: A Randomized Double-Blinded Sham-Controlled Study.
    Dissanayaka T; Zoghi M; Farrell M; Egan G; Jaberzadeh S
    Brain Connect; 2022 Apr; 12(3):260-274. PubMed ID: 34963309
    [No Abstract]   [Full Text] [Related]  

  • 78. Phosphene and motor transcranial magnetic stimulation thresholds are correlated: A meta-analytic investigation.
    Phylactou P; Pham TNM; Narskhani N; Diya N; Seminowicz DA; Schabrun SM
    Prog Neuropsychopharmacol Biol Psychiatry; 2024 Jul; 133():111020. PubMed ID: 38692474
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficacy of high-intensity, low-volume interval training compared to continuous aerobic training on insulin resistance, skeletal muscle structure and function in adults with metabolic syndrome: study protocol for a randomized controlled clinical trial (Intraining-MET).
    Gallo-Villegas J; Aristizabal JC; Estrada M; Valbuena LH; Narvaez-Sanchez R; Osorio J; Aguirre-Acevedo DC; Calderón JC
    Trials; 2018 Feb; 19(1):144. PubMed ID: 29482601
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control.
    Kao SC; Westfall DR; Soneson J; Gurd B; Hillman CH
    Psychophysiology; 2017 Sep; 54(9):1335-1345. PubMed ID: 28480961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.