These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38851512)
21. δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China. Li MD; Wang YX; Li P; Deng YM; Xie XJ Ecotoxicology; 2014 Dec; 23(10):1958-68. PubMed ID: 25149868 [TBL] [Abstract][Full Text] [Related]
22. Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints. Khaska M; Le Gal La Salle C; Verdoux P; Boutin R J Contam Hydrol; 2015; 177-178():122-35. PubMed ID: 25899162 [TBL] [Abstract][Full Text] [Related]
23. Combining metal and sulfate isotopes measurements to identify different anthropogenic impacts on dissolved heavy metals levels in river water. Zhang C; Zhang D; Duan HZ; Zhao ZQ; Zhang JW; Huang XY; Ma BJ; Zheng DS Chemosphere; 2023 Jan; 310():136747. PubMed ID: 36216113 [TBL] [Abstract][Full Text] [Related]
24. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). Biddau R; Dore E; Da Pelo S; Lorrai M; Botti P; Testa M; Cidu R Water Res; 2023 Apr; 232():119663. PubMed ID: 36796152 [TBL] [Abstract][Full Text] [Related]
25. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Kim H; Kaown D; Mayer B; Lee JY; Hyun Y; Lee KK Sci Total Environ; 2015 Nov; 533():566-75. PubMed ID: 26204420 [TBL] [Abstract][Full Text] [Related]
26. Identification of groundwater contamination zone around a reclaimed landfill using carbon isotopes. Porowska D Water Sci Technol; 2017 Jan; 75(2):328-339. PubMed ID: 28112660 [TBL] [Abstract][Full Text] [Related]
27. Application of stable isotopes (δ³⁴S-SO₄, δ¹⁸O-SO₄, δ¹⁵N-NO ₃, δ¹⁸O-NO ₃) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain). Urresti-Estala B; Vadillo-Pérez I; Jiménez-Gavilán P; Soler A; Sánchez-García D; Carrasco-Cantos F Sci Total Environ; 2015 Feb; 506-507():46-57. PubMed ID: 25460938 [TBL] [Abstract][Full Text] [Related]
28. Regional and temporal variability of the isotope composition (O, S) of atmospheric sulphate in the region of Freiberg, Germany, and consequences for dissolved sulphate in groundwater and river water. Tichomirowa M; Heidel C Isotopes Environ Health Stud; 2012; 48(1):118-43. PubMed ID: 22092070 [TBL] [Abstract][Full Text] [Related]
29. Interpreting complex geochemistry of groundwater in a coastal paddy field near a mine using isotopic signatures of sulfate and water. Kim DM; Kwon OH; Oh YS; Lee JS Environ Geochem Health; 2021 Oct; 43(10):4105-4122. PubMed ID: 33774777 [TBL] [Abstract][Full Text] [Related]
30. Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination. Lee KS; Ko KS; Kim EY Environ Geochem Health; 2020 May; 42(5):1387-1399. PubMed ID: 31617039 [TBL] [Abstract][Full Text] [Related]
31. Contaminant sources and processes affecting spring water quality in a typical karst basin (Hongjiadu Basin, SW China): insights provided by hydrochemical and isotopic data. Ren K; Pan X; Zeng J; Yuan D Environ Sci Pollut Res Int; 2019 Oct; 26(30):31354-31367. PubMed ID: 31473924 [TBL] [Abstract][Full Text] [Related]
32. Sources and migration of heavy metals in a karst water system under the threats of an abandoned Pb-Zn mine, Southwest China. Qin W; Han D; Song X; Liu S Environ Pollut; 2021 May; 277():116774. PubMed ID: 33640821 [TBL] [Abstract][Full Text] [Related]
33. Zinc in soil reflecting the intensive coal mining activities: Evidence from stable zinc isotopes analysis. Wang D; Zheng L; Ren M; Li C; Dong X; Wei X; Zhou W; Cui J Ecotoxicol Environ Saf; 2022 Jul; 239():113669. PubMed ID: 35605319 [TBL] [Abstract][Full Text] [Related]
34. Tracing and quantifying lake water and groundwater fluxes in the area under mining dewatering pressure using coupled O and H stable isotope approach. Lewicka-Szczebak D; Jędrysek MO Isotopes Environ Health Stud; 2013; 49(1):9-28. PubMed ID: 22775141 [TBL] [Abstract][Full Text] [Related]
35. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine-Insight from stable isotopes and Bayesian isotope mixing model. Mao H; Wang C; Qu S; Liao F; Wang G; Shi Z Sci Total Environ; 2023 Feb; 859(Pt 2):160368. PubMed ID: 36414065 [TBL] [Abstract][Full Text] [Related]
36. A multiple isotope (S, H, O and C) approach to estimate sulfate increasing mechanism of groundwater in coal mine area. Huang P; Zhang Y; Li Y; Gao H; Cui M; Chai S Sci Total Environ; 2023 Nov; 900():165852. PubMed ID: 37517724 [TBL] [Abstract][Full Text] [Related]
38. Continuous monitoring of dissolved inorganic nitrogen (DIN) transformations along the waste-vadose zone - groundwater path of an uncontrolled landfill, using multiple N-species isotopic analysis. Aharoni I; Dahan O; Siebner H Water Res; 2022 Jul; 219():118508. PubMed ID: 35533620 [TBL] [Abstract][Full Text] [Related]
39. Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. Babcsányi I; Chabaux F; Granet M; Meite F; Payraudeau S; Duplay J; Imfeld G Sci Total Environ; 2016 Jul; 557-558():154-62. PubMed ID: 26994803 [TBL] [Abstract][Full Text] [Related]
40. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia. Currell M; Banfield D; Cartwright I; Cendón DI Environ Sci Pollut Res Int; 2017 May; 24(15):13168-13183. PubMed ID: 27497852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]