BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38851709)

  • 1. Advanced waveform analysis of diaphragm surface EMG allows for continuous non-invasive assessment of respiratory effort in critically ill patients at different PEEP levels.
    Warnaar RSP; Cornet AD; Beishuizen A; Moore CM; Donker DW; Oppersma E
    Crit Care; 2024 Jun; 28(1):195. PubMed ID: 38851709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the diaphragm neuromuscular efficiency index in mechanically ventilated critically ill patients.
    Jansen D; Jonkman AH; Roesthuis L; Gadgil S; van der Hoeven JG; Scheffer GJ; Girbes A; Doorduin J; Sinderby CS; Heunks LMA
    Crit Care; 2018 Sep; 22(1):238. PubMed ID: 30261920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of inspiratory effort using airway occlusion maneuvers in ventilated children: a secondary analysis of an ongoing randomized trial testing a lung and diaphragm protective ventilation strategy.
    Ito Y; Herrera MG; Hotz JC; Kyogoku M; Newth CJL; Bhalla AK; Takeuchi M; Khemani RG
    Crit Care; 2023 Nov; 27(1):466. PubMed ID: 38031116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Noninvasive Airway Occlusion Maneuvers to Assess Lung Stress and Diaphragm Effort in Mechanically Ventilated Critically Ill Patients.
    de Vries HJ; Tuinman PR; Jonkman AH; Liu L; Qiu H; Girbes ARJ; Zhang Y; de Man AME; de Grooth HJ; Heunks L
    Anesthesiology; 2023 Mar; 138(3):274-288. PubMed ID: 36520507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients.
    Mahul M; Jung B; Galia F; Molinari N; de Jong A; Coisel Y; Vaschetto R; Matecki S; Chanques G; Brochard L; Jaber S
    Crit Care; 2016 Oct; 20(1):346. PubMed ID: 27784322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial.
    Ferreira JC; Diniz-Silva F; Moriya HT; Alencar AM; Amato MBP; Carvalho CRR
    BMC Pulm Med; 2017 Nov; 17(1):139. PubMed ID: 29115949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment.
    Spadaro S; Mauri T; Böhm SH; Scaramuzzo G; Turrini C; Waldmann AD; Ragazzi R; Pesenti A; Volta CA
    Crit Care; 2018 Jan; 22(1):26. PubMed ID: 29386048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound Assessment of Respiratory Workload With High-Flow Nasal Oxygen Versus Other Noninvasive Methods After Chest Surgery.
    Laverdure F; Genty T; Rezaiguia-Delclaux S; Herve P; Stephan F
    J Cardiothorac Vasc Anesth; 2019 Nov; 33(11):3042-3047. PubMed ID: 31201041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive end-expiratory pressure affects geometry and function of the human diaphragm.
    Jansen D; Jonkman AH; Vries HJ; Wennen M; Elshof J; Hoofs MA; van den Berg M; Man AME; Keijzer C; Scheffer GJ; van der Hoeven JG; Girbes A; Tuinman PR; Marcus JT; Ottenheijm CAC; Heunks L
    J Appl Physiol (1985); 2021 Oct; 131(4):1328-1339. PubMed ID: 34473571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Diaphragmatic Electrical Activity by Surface Electromyography in Intubated Subjects and Its Relationship With Inspiratory Effort.
    Bellani G; Bronco A; Arrigoni Marocco S; Pozzi M; Sala V; Eronia N; Villa G; Foti G; Tagliabue G; Eger M; Pesenti A
    Respir Care; 2018 Nov; 63(11):1341-1349. PubMed ID: 30389829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe diaphragmatic dysfunction with preserved activity of accessory respiratory muscles in a critically ill child: a case report of failure of neurally adjusted ventilatory assist (NAVA) and successful support with pressure support ventilation (PSV).
    Langer T; Baio S; Chidini G; Marchesi T; Grasselli G; Pesenti A; Calderini E
    BMC Pediatr; 2019 May; 19(1):155. PubMed ID: 31101098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study.
    Umbrello M; Formenti P; Longhi D; Galimberti A; Piva I; Pezzi A; Mistraletti G; Marini JJ; Iapichino G
    Crit Care; 2015 Apr; 19(1):161. PubMed ID: 25886857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Positive End-Expiratory Pressure on Thermodilution-Derived Right Ventricular Parameters in Mechanically Ventilated Critically Ill Patients.
    Cherpanath TG; Lagrand WK; Binnekade JM; Schneider AJ; Schultz MJ; Groeneveld JA
    J Cardiothorac Vasc Anesth; 2016 Jun; 30(3):632-8. PubMed ID: 26703971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of electrical impedance tomography to set optimal positive end-expiratory pressure for veno-venous ECMO-treated severe ARDS patients.
    Puel F; Crognier L; Soulé C; Vardon-Bounes F; Ruiz S; Seguin T; Fourcade O; Minville V; Conil JM; Georges B
    J Crit Care; 2020 Dec; 60():38-44. PubMed ID: 32736198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive end-expiratory pressure and prone position alter the capacity of force generation from diaphragm in acute respiratory distress syndrome: an animal experiment.
    Firstiogusran AMF; Yoshida T; Hashimoto H; Iwata H; Fujino Y
    BMC Anesthesiol; 2022 Dec; 22(1):373. PubMed ID: 36460946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bedside measurement of changes in lung impedance to monitor alveolar ventilation in dependent and non-dependent parts by electrical impedance tomography during a positive end-expiratory pressure trial in mechanically ventilated intensive care unit patients.
    Bikker IG; Leonhardt S; Reis Miranda D; Bakker J; Gommers D
    Crit Care; 2010; 14(3):R100. PubMed ID: 20509966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic PEEP determined by static pressure-volume curves--application of a novel automated occlusion method.
    Sydow M; Burchardi H; Zinserling J; Crozier TA; Denecke T; Zielmann S
    Intensive Care Med; 1993; 19(3):166-71. PubMed ID: 8315125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of respiratory system compliance with electrical impedance tomography using a positive end-expiratory pressure wave maneuver during pressure support ventilation: a pilot clinical study.
    Becher TH; Bui S; Zick G; Bläser D; Schädler D; Weiler N; Frerichs I
    Crit Care; 2014 Dec; 18(6):679. PubMed ID: 25492307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface electromyography to quantify neuro-respiratory drive and neuro-mechanical coupling in mechanically ventilated children.
    Koopman AA; van Dijk J; Oppersma E; Blokpoel RGT; Kneyber MCJ
    Respir Res; 2023 Mar; 24(1):77. PubMed ID: 36915106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.