These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38851749)

  • 1. Carbon-wise utilization of lignin-related compounds by synergistically employing anaerobic and aerobic bacteria.
    Meriläinen E; Efimova E; Santala V; Santala S
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):78. PubMed ID: 38851749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
    Zhang B; Meng Q; Liu H; Han B
    Acc Chem Res; 2023 Dec; 56(24):3558-3571. PubMed ID: 38029298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering
    Arvay E; Biggs BW; Guerrero L; Jiang V; Tyo K
    Metab Eng Commun; 2021 Dec; 13():e00173. PubMed ID: 34430203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Highly Ferulate-Tolerant Acinetobacter baylyi ADP1 Isolates by a Rapid Reverse Engineering Method.
    Luo J; McIntyre EA; Bedore SR; Santala V; Neidle EL; Santala S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0178021. PubMed ID: 34788063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 6. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic natural products synthesis from aromatic lignin monomers using
    Biggs BW; Tyo KEJ
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkane and wax ester production from lignin-related aromatic compounds.
    Salmela M; Lehtinen T; Efimova E; Santala S; Santala V
    Biotechnol Bioeng; 2019 Aug; 116(8):1934-1945. PubMed ID: 31038208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The catabolism of lignin-derived
    Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD
    Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic pairing of aerobic and anaerobic production in a one-pot batch cultivation.
    Salmela M; Lehtinen T; Efimova E; Santala S; Mangayil R
    Biotechnol Biofuels; 2018; 11():187. PubMed ID: 29988745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in
    Johnson CW; Abraham PE; Linger JG; Khanna P; Hettich RL; Beckham GT
    Metab Eng Commun; 2017 Dec; 5():19-25. PubMed ID: 29188181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering
    Vilbert AC; Kontur WS; Gille D; Noguera DR; Donohue TJ
    Appl Environ Microbiol; 2024 Jan; 90(1):e0166023. PubMed ID: 38117061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced upgrading of lignocellulosic substrates by coculture of Saccharomyces cerevisiae and Acinetobacter baylyi ADP1.
    Liu C; Choi B; Efimova E; Nygård Y; Santala S
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):61. PubMed ID: 38711153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116.
    Barton N; Horbal L; Starck S; Kohlstedt M; Luzhetskyy A; Wittmann C
    Metab Eng; 2018 Jan; 45():200-210. PubMed ID: 29246517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redundancy in aromatic O-demethylation and ring opening reactions in
    Perez JM; Kontur WS; Gehl C; Gille DM; Ma Y; Niles AV; Umana G; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities and challenges in biological lignin valorization.
    Beckham GT; Johnson CW; Karp EM; Salvachúa D; Vardon DR
    Curr Opin Biotechnol; 2016 Dec; 42():40-53. PubMed ID: 26974563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Acinetobacter baylyi ADP1 for removal of Clostridium butyricum growth inhibitors produced from lignocellulosic hydrolysates.
    Kannisto MS; Mangayil RK; Shrivastava-Bhattacharya A; Pletschke BI; Karp MT; Santala VP
    Biotechnol Biofuels; 2015; 8():198. PubMed ID: 26628912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of alkanes from CO
    Lehtinen T; Virtanen H; Santala S; Santala V
    Biotechnol Biofuels; 2018; 11():228. PubMed ID: 30151056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Ligninolysis: Toward a Bottom-Up Approach for Lignin Upgrading.
    Zhang R; Li C; Wang J; Yan Y
    Biochemistry; 2019 Mar; 58(11):1501-1510. PubMed ID: 30351915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.