These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38851753)

  • 1. Rapidly damping hydrogels engineered through molecular friction.
    Xu Z; Lu J; Lu D; Li Y; Lei H; Chen B; Li W; Xue B; Cao Y; Wang W
    Nat Commun; 2024 Jun; 15(1):4895. PubMed ID: 38851753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring hydrogel surface properties to modulate cellular response to shear loading.
    Meinert C; Schrobback K; Levett PA; Lutton C; Sah RL; Klein TJ
    Acta Biomater; 2017 Apr; 52():105-117. PubMed ID: 27729233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement.
    Milner PE; Parkes M; Puetzer JL; Chapman R; Stevens MM; Cann P; Jeffers JRT
    Acta Biomater; 2018 Jan; 65():102-111. PubMed ID: 29109026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-network hydrogels with high strength, low friction and self-healing by chemical-physical crosslinking.
    Li X; Qin H; Zhang X; Guo Z
    J Colloid Interface Sci; 2019 Nov; 556():549-556. PubMed ID: 31476487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-network hydrogel and its potential biomedical application: A review.
    Nonoyama T; Gong JP
    Proc Inst Mech Eng H; 2015 Dec; 229(12):853-63. PubMed ID: 26614799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement.
    Wang Z; Meng F; Zhang Y; Guo H
    Langmuir; 2023 Feb; 39(6):2368-2379. PubMed ID: 36725688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Dissipation Sources: A Central Aspect for Enhancing the Mechanical and Mechanobiological Performances of Hydrogels.
    Nasrollahzadeh N; Karami P; Pioletti DP
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39662-39671. PubMed ID: 31565916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact-Resistant Hydrogels by Harnessing 2D Hierarchical Structures.
    Liang X; Chen G; Lei IM; Zhang P; Wang Z; Chen X; Lu M; Zhang J; Wang Z; Sun T; Lan Y; Liu J
    Adv Mater; 2023 Jan; 35(1):e2207587. PubMed ID: 36284475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical viability of a thermoplastic elastomer hydrogel as a soft tissue replacement material.
    Fischenich KM; Lewis JT; Bailey TS; Haut Donahue TL
    J Mech Behav Biomed Mater; 2018 Mar; 79():341-347. PubMed ID: 29425534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun fibrous membrane reinforced hydrogels with preferable mechanical and tribological performance as cartilage substitutes.
    Chen Q; Yan X; Chen K; Feng C; Wang D; Li X; Zhao X; Chai Z; Wang Q; Zhang D; Zeng H
    J Mater Chem B; 2023 Feb; 11(8):1713-1724. PubMed ID: 36723224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage.
    Chen Q; Zhang X; Chen K; Feng C; Wang D; Qi J; Li X; Zhao X; Chai Z; Zhang D
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52347-52358. PubMed ID: 36349936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue.
    Blum MM; Ovaert TC
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4377-83. PubMed ID: 23910356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving hydrogels' toughness by increasing the dissipative properties of their network.
    Moghadam MN; Pioletti DP
    J Mech Behav Biomed Mater; 2015 Jan; 41():161-7. PubMed ID: 25460412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications.
    Chen Y; Song J; Wang S; Liu W
    Macromol Biosci; 2023 Jan; 23(1):e2200275. PubMed ID: 36254859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tough Hydrogels with Different Toughening Mechanisms and Applications.
    Xu Z; Chen Y; Cao Y; Xue B
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture.
    McNulty JD; Marti-Figueroa C; Seipel F; Plantz JZ; Ellingham T; Duddleston LJL; Goris S; Cox BL; Osswald TA; Turng LS; Ashton RS
    Acta Biomater; 2019 Sep; 95():258-268. PubMed ID: 31028908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation of a Granular Damping Element.
    Avdić S; Nagode M; Klemenc J; Oman S
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong and Reversible Covalent Double Network Hydrogel Based on Force-Coupled Enzymatic Reactions.
    He G; Lei H; Sun W; Gu J; Yu W; Zhang D; Chen H; Li Y; Qin M; Xue B; Wang W; Cao Y
    Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202201765. PubMed ID: 35419931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.