These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38851801)

  • 1. Influences of defective interphase and contact region among nanosheets on the electrical conductivity of polymer graphene nanocomposites.
    Zare Y; Munir MT; Rhee KY
    Sci Rep; 2024 Jun; 14(1):13210. PubMed ID: 38851801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of electrical conductivity of polymer nanocomposites containing a deficient interphase around graphene nanosheet.
    Zare Y; Munir MT; Rhee KY
    Sci Rep; 2024 Apr; 14(1):8737. PubMed ID: 38627579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of contact resistance on the electrical conductivity of polymer graphene nanocomposites to optimize the biosensors detecting breast cancer cells.
    Zare Y; Rhee KY
    Sci Rep; 2022 Mar; 12(1):5406. PubMed ID: 35354877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation onset and conductivity of nanocomposites assuming an incomplete dispersion of graphene nanosheets in a polymer matrix.
    Zare Y; Munir MT; Rhee KY
    Phys Chem Chem Phys; 2023 Dec; 25(47):32460-32470. PubMed ID: 37994515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Kovacs model for electrical conductivity of carbon nanofiber-polymer systems.
    Arjmandi SK; Khademzadeh Yeganeh J; Zare Y; Rhee KY
    Sci Rep; 2023 Jan; 13(1):7. PubMed ID: 36593230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of contact number among graphene nanosheets on the conductivities of tunnels and polymer composites.
    Zare Y; Kim TH; Gharib N; Chang YW
    Sci Rep; 2023 Jun; 13(1):9506. PubMed ID: 37308514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating of effective conductivity for grapheme-polymer nanocomposites.
    Vatani M; Zare Y; Gharib N; Rhee KY; Park SJ
    Sci Rep; 2023 Apr; 13(1):5907. PubMed ID: 37041268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancement of the Power-Law Model and Its Percolation Exponent for the Electrical Conductivity of a Graphene-Containing System as a Component in the Biosensing of Breast Cancer.
    Zare Y; Rhee KY; Park SJ
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressing of a power model for electrical conductivity of graphene-based composites.
    Zare Y; Rhee KY; Park SJ
    Sci Rep; 2023 Jan; 13(1):1596. PubMed ID: 36709238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Conductivity of Carbon-Nanotube-Filled Systems by Interfacial Conductivity to Optimize Breast Cancer Cell Sensors.
    Zare Y; Rhee KY; Park SJ
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting of tunneling resistivity between adjacent nanosheets in graphene-polymer systems.
    Zare Y; Gharib N; Nam DH; Chang YW
    Sci Rep; 2023 Aug; 13(1):12455. PubMed ID: 37528228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical and physical effects of nanofillers on percolation and electrical conductivity of polymer carbon-based nanocomposites: a general micro-mechanical model.
    Payandehpeyman J; Mazaheri M
    Soft Matter; 2023 Jan; 19(3):530-539. PubMed ID: 36541407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of Electrical Conductivity for Graphene-Filled Products Assuming Interphase, Tunneling Effect, and Filler Agglomeration Optimizing Breast Cancer Biosensors.
    Zare Y; Rhee KY
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene.
    Di Pierro A; Mortazavi B; Noori H; Rabczuk T; Fina A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the electrical conductivity in polymer carbon nanotube nanocomposites based on the volume fractions and resistances of the nanoparticle, interphase, and tunneling regions in conductive networks.
    Liu Z; Peng W; Zare Y; Hui D; Rhee KY
    RSC Adv; 2018 May; 8(34):19001-19010. PubMed ID: 35539634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity.
    Yoonessi M; Gaier JR; Sahimi M; Daulton TL; Kaner RB; Meador MA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43230-43238. PubMed ID: 29168637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of interfacial conductivity between polymer matrix and carbon nanotubes on the electrical conductivity of nanocomposites.
    Zare Y; Rhee KY
    RSC Adv; 2019 Dec; 10(1):424-433. PubMed ID: 35492511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of Electrical Conductivity for Polymer-Carbon Nanofiber Systems.
    Khalil Arjmandi S; Khademzadeh Yeganeh J; Zare Y; Rhee KY
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the Electrical Conductivity of Polymer Nanocomposites Assuming the Interphase Layer Surrounding Carbon Nanotubes.
    Zare Y; Rhee KY
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32053949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method.
    Fang C; Zhang J; Chen X; Weng GJ
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32521611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.