These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38852325)
1. Aptamer responsive DNA Functionalized hydrogels electrochemiluminescence biosensor for the detection of adenosine triphosphate. Wang S; Wang J; Zhu L; Li C; Wu J; Ge S; Yu J Biosens Bioelectron; 2024 Oct; 261():116476. PubMed ID: 38852325 [TBL] [Abstract][Full Text] [Related]
2. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Zhu HY; Ding SN Biosens Bioelectron; 2019 Jun; 134():109-116. PubMed ID: 30965162 [TBL] [Abstract][Full Text] [Related]
3. An efficient signal-on aptamer-based biosensor for adenosine triphosphate detection using graphene oxide both as an electrochemical and electrochemiluminescence signal indicator. Huang X; Li Y; Zhang X; Zhang X; Chen Y; Gao W Analyst; 2015 Sep; 140(17):6015-24. PubMed ID: 26191542 [TBL] [Abstract][Full Text] [Related]
4. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Cheng Y; Lei J; Chen Y; Ju H Biosens Bioelectron; 2014 Jan; 51():431-6. PubMed ID: 24011844 [TBL] [Abstract][Full Text] [Related]
5. Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Ning Z; Zheng Y; Pan D; Zhang Y; Shen Y Biosens Bioelectron; 2020 Feb; 150():111945. PubMed ID: 31818762 [TBL] [Abstract][Full Text] [Related]
6. Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection. Sun Y; Fang L; Han Y; Feng A; Liu S; Zhang K; Xu JJ Anal Chem; 2022 May; 94(19):7035-7040. PubMed ID: 35467832 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
8. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg Babamiri B; Salimi A; Hallaj R Biosens Bioelectron; 2018 Apr; 102():328-335. PubMed ID: 29161665 [TBL] [Abstract][Full Text] [Related]
9. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Wang J; Jiang X; Han H Biosens Bioelectron; 2016 Aug; 82():26-31. PubMed ID: 27031188 [TBL] [Abstract][Full Text] [Related]
10. A replacement-type electrochemiluminescent aptasensor for lysozyme based on full-electric modification electrode coupled to silica-coated Ru(bpy) Chen Q; Xu M; Lv L; Wang X Anal Bioanal Chem; 2021 Dec; 413(30):7411-7419. PubMed ID: 34731261 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive electrochemiluminescence biosensor based on dual quenching effects of silver nanoclusters and multiple cycling amplification for detection of ATP. Tan L; Ge J; Jie G; Zhou H; Wang H Talanta; 2024 May; 271():125668. PubMed ID: 38237282 [TBL] [Abstract][Full Text] [Related]
12. Sensitive detection of kanamycin based on ECL resonance energy transfer between iridium complex doped SiO Yao H; Jia C; Dong Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124399. PubMed ID: 38718747 [TBL] [Abstract][Full Text] [Related]
13. Electrochemiluminescence resonance energy transfer biosensing platform between g-C Yin T; Ye Y; Dong W; Jie G Biosens Bioelectron; 2022 Nov; 215():114580. PubMed ID: 35917609 [TBL] [Abstract][Full Text] [Related]
14. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Shan Y; Xu JJ; Chen HY Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752 [TBL] [Abstract][Full Text] [Related]
15. A multifunctional electrochemiluminescence and photoelectrochemical biosensor based on a quantum dot ion-exchange reaction for two-channel detection of thrombin. Xue Y; Dong W; Wang B; Jie G Analyst; 2023 Sep; 148(18):4456-4462. PubMed ID: 37560929 [TBL] [Abstract][Full Text] [Related]
16. An aptamer-based electrochemiluminescent biosensor for ATP detection. Yao W; Wang L; Wang H; Zhang X; Li L Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209 [TBL] [Abstract][Full Text] [Related]
17. Electrogenerated Chemiluminescence Resonance Energy Transfer between Ru(bpy)3(2+) Electrogenerated Chemiluminescence and Gold Nanoparticles/Graphene Oxide Nanocomposites with Graphene Oxide as Coreactant and Its Sensing Application. Dong YP; Zhou Y; Wang J; Zhu JJ Anal Chem; 2016 May; 88(10):5469-75. PubMed ID: 27101322 [TBL] [Abstract][Full Text] [Related]
18. Nitrogen-Doped Graphene Quantum Dots@SiO2 Nanoparticles as Electrochemiluminescence and Fluorescence Signal Indicators for Magnetically Controlled Aptasensor with Dual Detection Channels. Wang C; Qian J; Wang K; Hua M; Liu Q; Hao N; You T; Huang X ACS Appl Mater Interfaces; 2015 Dec; 7(48):26865-73. PubMed ID: 26524349 [TBL] [Abstract][Full Text] [Related]
19. In situ generated CdTe quantum dot-encapsulated hafnium polymer membrane to boost electrochemiluminescence analysis of tumor biomarkers. Li H; Wang Z; Li F; Gai P Anal Bioanal Chem; 2024 Sep; 416(21):4769-4778. PubMed ID: 38676824 [TBL] [Abstract][Full Text] [Related]
20. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]