BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38852345)

  • 21. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental demonstration of a high-sensitivity humidity sensor based on an Agarose-coated transmission-type photonic crystal fiber interferometer.
    Mathew J; Semenova Y; Farrell G
    Appl Opt; 2013 Jun; 52(16):3884-90. PubMed ID: 23736348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photothermal graphene/UiO-66-NH
    Song L; Zhao T; Yang D; Wang X; Hao X; Liu Y; Zhang S; Yu ZZ
    J Hazard Mater; 2020 Jul; 393():122332. PubMed ID: 32120207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO
    Yang Z; Zhang Y; Zhao L; Fei T; Liu S; Zhang T
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2703-2717. PubMed ID: 34774322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gas phase detection of chemical warfare agents CWAs with portable Raman.
    Lafuente M; Sanz D; Urbiztondo M; Santamaría J; Pina MP; Mallada R
    J Hazard Mater; 2020 Feb; 384():121279. PubMed ID: 31606709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergy of Two Intermolecular Hydrogen Bonds Promotes Highly Sensitive and Selective Room-Temperature Dimethyl Methylphosphonate Sensing: A Case of rGO-Based Gas Sensors.
    Yang Z; Wei Z; Xing Y; Zhao L; Zhang Y; Xin C; Fei T; Liu S; Zhang T
    Langmuir; 2023 Aug; 39(31):10935-10946. PubMed ID: 37499244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials.
    Jiang W; Jiang M; Wang T; Chen X; Zeng M; Yang J; Zhou Z; Hu N; Su Y; Yang Z
    RSC Adv; 2021 Apr; 11(24):14805-14813. PubMed ID: 35423981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogeneously niobium-doped MoS
    Jiang H; Wang H; Shangguan Y; Chen J; Liang T
    Front Chem; 2022; 10():1011471. PubMed ID: 36171997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A dimethyl methylphonate sensor based on HFIPPH modified SWCNTs.
    Wu H; Yuan Y; Wu Q; Bu X; Hu L; Li X; Wang X; Liu W
    Nanotechnology; 2022 Jan; 33(16):. PubMed ID: 35008068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Performance of Surface Acoustic Wave Sensors by Plasma Treatments for Chemical Warfare Agents Monitoring.
    Kim E; Kim J; Ha S; Song C; Kim JH
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7145-7150. PubMed ID: 32604573
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Shaik M; Rao VK; Ramana GV; Halder M; Gutch PK; Pandey P; Jain R
    RSC Adv; 2018 Feb; 8(15):8240-8245. PubMed ID: 35541990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen-Bond Acidic Materials in Acoustic Wave Sensors for Nerve Chemical Warfare Agents' Detection.
    Grabka M; Jasek K; Witkiewicz Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-side microcantilevers as a key to understand the adsorption mechanisms and kinetics of chemical warfare agents on vertically-aligned TiO
    Thomas G; Spitzer D
    J Hazard Mater; 2021 Mar; 406():124672. PubMed ID: 33310337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intelligent Multifunctional Sensing Systems based on Ordered Macro-Microporous Metal Organic Framework and Its Derivatives.
    Wang J; Ren Y; Li W; Wu L; Deng Y; Fang X
    Small Methods; 2023 Jul; 7(7):e2201687. PubMed ID: 37116102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensing Chemical Warfare Agent Simulants via Photonic Crystals of the
    Kittle JD; Fisher BP; Esparza AJ; Morey AM; Iacono ST
    ACS Omega; 2017 Nov; 2(11):8301-8307. PubMed ID: 30023581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Humidity-Independent Artificial Olfactory Array Enabled by Hydrophobic Core-Shell Dye/MOFs@COFs Composites for Plant Disease Diagnosis.
    Wang X; Wang Y; Qi H; Chen Y; Guo W; Yu H; Chen H; Ying Y
    ACS Nano; 2022 Sep; 16(9):14297-14307. PubMed ID: 36043472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast freestanding microfiber humidity sensor based on three-dimensional graphene network cladding.
    Zhong Y; Wang Y; Wang Z; Xing Z; Xiao Y; Yu J; Guan H; Luo Y; Lu H; Zhu W; Chen Z
    Opt Express; 2020 Feb; 28(4):4362-4373. PubMed ID: 32121674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Nanoheterostructure of HFIP-Grafted α-Fe
    Wang X; Liu J; Li R; Yu J; Liu Q; Zhu J; Liu P
    Nanomaterials (Basel); 2024 Feb; 14(3):. PubMed ID: 38334576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(3-Methylthiophene) Thin Films Deposited Electrochemically on QCMs for the Sensing of Volatile Organic Compounds.
    Öztürk S; Kösemen A; Şen Z; Kılınç N; Harbeck M
    Sensors (Basel); 2016 Mar; 16(4):. PubMed ID: 27023539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.