These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38852354)

  • 21. Reversible electrowetting transitions on superhydrophobic surfaces.
    Vanzo D; Luzar A; Bratko D
    Phys Chem Chem Phys; 2021 Dec; 23(47):27005-27013. PubMed ID: 34846052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces.
    Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M
    Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Wetting of Ionic Liquid Drops on Hydrophobic Microstructures.
    Aldhaleai A; Tsai PA
    Langmuir; 2022 Dec; 38(51):16073-16083. PubMed ID: 36516403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Challenge of Superhydrophobicity: Environmentally Facilitated Cassie-Wenzel Transitions and Structural Design.
    Zhong X; Xie S; Guo Z
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305961. PubMed ID: 38145324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.
    Brabcova Z; McHale G; Wells GG; Brown CV; Newton MI; Edwards AM
    Langmuir; 2016 Oct; 32(42):10844-10850. PubMed ID: 27690464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces.
    Murakami D; Jinnai H; Takahara A
    Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermediate wetting state at nano/microstructured surfaces.
    Nagayama G; Zhang D
    Soft Matter; 2020 Apr; 16(14):3514-3521. PubMed ID: 32215385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freezing-Melting Mediated Dewetting Transition for Droplets on Superhydrophobic Surfaces with Condensation.
    Cui J; Wang T; Che Z
    Langmuir; 2024 Jul; 40(28):14685-14696. PubMed ID: 38970799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switchable Wettability and Adhesion of Micro/Nanostructured Elastomer Surface via Electric Field for Dynamic Liquid Droplet Manipulation.
    Li Y; Li J; Liu L; Yan Y; Zhang Q; Zhang N; He L; Liu Y; Zhang X; Tian D; Leng J; Jiang L
    Adv Sci (Weinh); 2020 Sep; 7(18):2000772. PubMed ID: 32999834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anomalous Water Wetting on a Hydrophilic Substrate under a High Electric Field.
    Xu Q; Shen Y; Zhang C; Xu R; Gu Q; Guo H; Meng S
    J Phys Chem Lett; 2023 Dec; 14(51):11735-11741. PubMed ID: 38113518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of surface free energy at microstructured surface to investigate intermediate wetting state for partial wetting model.
    Yu Y; Zhang D; Nagayama G
    Soft Matter; 2023 Feb; 19(6):1249-1257. PubMed ID: 36722932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wetting theory for small droplets on textured solid surfaces.
    Kim D; Pugno NM; Ryu S
    Sci Rep; 2016 Nov; 6():37813. PubMed ID: 27897194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-gradient regular solution model for simple liquids wetting complex surface topologies.
    Akerboom S; Kamperman M; Leermakers FA
    Beilstein J Nanotechnol; 2016; 7():1377-1396. PubMed ID: 27826512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Micro/Nanoporous Fluoropolymers with Reduced Bioadhesion in Digital Microfluidics.
    Goralczyk A; Bhagwat S; Mayoussi F; Nekoonam N; Sachsenheimer K; Hou P; Kotz-Helmer F; Helmer D; Rapp BE
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles.
    McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR
    Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.