These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38852503)

  • 1. Machine learning and related approaches in transcriptomics.
    Cheng Y; Xu SM; Santucci K; Lindner G; Janitz M
    Biochem Biophys Res Commun; 2024 Sep; 724():150225. PubMed ID: 38852503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomics and epigenetic data integration learning module on Google Cloud.
    Ruprecht NA; Kennedy JD; Bansal B; Singhal S; Sens D; Maggio A; Doe V; Hawkins D; Campbel R; O'Connell K; Gill JS; Schaefer K; Singhal SK
    Brief Bioinform; 2024 Jul; 25(Supplement_1):. PubMed ID: 39101486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches.
    Santucci K; Cheng Y; Xu SM; Janitz M
    Brief Funct Genomics; 2024 Dec; 23(6):683-694. PubMed ID: 39158328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection.
    Ibberson CB; Whiteley M
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning.
    Li Y; Lac L; Liu Q; Hu P
    PLoS Comput Biol; 2024 Jun; 20(6):e1012254. PubMed ID: 38935799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning applications in single-cell genomics and transcriptomics data analysis.
    Erfanian N; Heydari AA; Feriz AM; Iañez P; Derakhshani A; Ghasemigol M; Farahpour M; Razavi SM; Nasseri S; Safarpour H; Sahebkar A
    Biomed Pharmacother; 2023 Sep; 165():115077. PubMed ID: 37393865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical guide to spatial transcriptomics.
    Valihrach L; Zucha D; Abaffy P; Kubista M
    Mol Aspects Med; 2024 Jun; 97():101276. PubMed ID: 38776574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.
    Hassan D; Ariyur A; Daulatabad SV; Mir Q; Janga SC
    RNA Biol; 2024 Jan; 21(1):1-15. PubMed ID: 38758523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease.
    Taroni JN; Grayson PC; Hu Q; Eddy S; Kretzler M; Merkel PA; Greene CS
    Cell Syst; 2019 May; 8(5):380-394.e4. PubMed ID: 31121115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omada: robust clustering of transcriptomes through multiple testing.
    Kariotis S; Tan PF; Lu H; Rhodes CJ; Wilkins MR; Lawrie A; Wang D
    Gigascience; 2024 Jan; 13():. PubMed ID: 38991852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data.
    Smith AM; Walsh JR; Long J; Davis CB; Henstock P; Hodge MR; Maciejewski M; Mu XJ; Ra S; Zhao S; Ziemek D; Fisher CK
    BMC Bioinformatics; 2020 Mar; 21(1):119. PubMed ID: 32197580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.
    Liang P; Zheng L; Long C; Yang W; Yang L; Zuo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioM2: biologically informed multi-stage machine learning for phenotype prediction using omics data.
    Zhang S; Li P; Wang S; Zhu J; Huang Z; Cai F; Freidel S; Ling F; Schwarz E; Chen J
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39126426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable transcriptomics analysis with Dask: applications in data science and machine learning.
    Moreno M; Vilaça R; Ferreira PG
    BMC Bioinformatics; 2022 Nov; 23(1):514. PubMed ID: 36451115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing.
    Gupta RK; Kuznicki J
    Cells; 2020 Jul; 9(8):. PubMed ID: 32707839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational framework to improve cross-platform implementation of transcriptomics signatures.
    Kreitmann L; D'Souza G; Miglietta L; Vito O; Jackson HR; Habgood-Coote D; Levin M; Holmes A; Kaforou M; Rodriguez-Manzano J
    EBioMedicine; 2024 Jul; 105():105204. PubMed ID: 38901146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.