These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38852870)
1. Historical reconstruction of glacier mass balance and its contribution to water resources in the Sawir Mountains from 2000 to 2020. Yu F; Wang P; Liu L; Li H; Zhang Z; Dai Y; Wang F; Chen P; Zhang M; Gao Y Sci Total Environ; 2024 Sep; 944():173703. PubMed ID: 38852870 [TBL] [Abstract][Full Text] [Related]
2. Spatial distribution pattern of degree-day factors of glaciers on the Qinghai-Tibetan Plateau. Deng C; Zhang W Environ Monit Assess; 2018 Jul; 190(8):475. PubMed ID: 30022373 [TBL] [Abstract][Full Text] [Related]
3. Hot Spots of Glacier Mass Balance Variability in Central Asia. Barandun M; Pohl E; Naegeli K; McNabb R; Huss M; Berthier E; Saks T; Hoelzle M Geophys Res Lett; 2021 Jun; 48(11):e2020GL092084. PubMed ID: 34219830 [TBL] [Abstract][Full Text] [Related]
4. How and when glacial runoff is important: Tracing dynamics of meltwater and rainfall contribution to river runoff from headwaters to lowland in the Caucasus Mountains. Rets E; Khomiakova V; Kornilova E; Ekaykin A; Kozachek A; Mikhalenko V Sci Total Environ; 2024 Jun; 927():172201. PubMed ID: 38583630 [TBL] [Abstract][Full Text] [Related]
5. Insight into atmospheric deposition and spatial distribution of bioavailable iron in the glaciers of northeastern Tibetan Plateau. Di J; Dong Z; Parteli EJR; Wei T; Marcelli A; Ren J; Qin X; Chen S Sci Total Environ; 2022 Jun; 825():153946. PubMed ID: 35189209 [TBL] [Abstract][Full Text] [Related]
6. Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Zhang Y; Gao T; Kang S; Sprenger M; Tao S; Du W; Yang J; Wang F; Meng W Sci Total Environ; 2020 Oct; 740():140056. PubMed ID: 32927540 [TBL] [Abstract][Full Text] [Related]
7. Revisiting the 24 year (1994-2018) record of glacier mass budget in the Suru sub-basin, western Himalaya: Overall response and controlling factors. Garg S; Shukla A; Garg PK; Yousuf B; Shukla UK; Lotus S Sci Total Environ; 2021 Dec; 800():149533. PubMed ID: 34426355 [TBL] [Abstract][Full Text] [Related]
8. Hydrochemistry dynamics in a glacierized headwater catchment of Lhasa River, Tibetan Plateau. Mingyue L; Xuejun S; Shengnan L; Jie W; Zijian L; Qianggong Z Sci Total Environ; 2024 Apr; 919():170810. PubMed ID: 38336076 [TBL] [Abstract][Full Text] [Related]
9. Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Zhang F; Qaiser FU; Zeng C; Pant RR; Wang G; Zhang H; Chen D Environ Sci Pollut Res Int; 2019 Aug; 26(23):23645-23660. PubMed ID: 31203542 [TBL] [Abstract][Full Text] [Related]
10. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau. Li Y; Kang S; Zhang X; Li C; Chen J; Qin X; Shao L; Tian L Sci Total Environ; 2023 Jan; 856(Pt 2):159214. PubMed ID: 36208735 [TBL] [Abstract][Full Text] [Related]
11. Response of glacier modelling parameters to time, space, and model complexity: Examples from eastern slopes of Canadian Rocky Mountains. Silwal G; Ammar ME; Thapa A; Bonsal B; Faramarzi M Sci Total Environ; 2023 May; 872():162156. PubMed ID: 36773922 [TBL] [Abstract][Full Text] [Related]
12. What drives the decrease of glacier surface albedo in High Mountain Asia in the past two decades? Xiao Y; Ke CQ; Shen X; Cai Y; Li H Sci Total Environ; 2023 Mar; 863():160945. PubMed ID: 36526205 [TBL] [Abstract][Full Text] [Related]
13. Energy balance model of mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No.1 in the Chinese Tien Shan. Che Y; Zhang M; Li Z; Wei Y; Nan Z; Li H; Wang S; Su B Sci Rep; 2019 Sep; 9(1):13958. PubMed ID: 31562372 [TBL] [Abstract][Full Text] [Related]
14. Recent changes in glacial area and volume on Tuanjiefeng peak region of Qilian Mountains, China. Xu J; Liu S; Zhang S; Guo W; Wang J PLoS One; 2013; 8(8):e70574. PubMed ID: 24015174 [TBL] [Abstract][Full Text] [Related]
15. Particularity of hydrological processes under heavy ablation based on environmental isotopes in transition zones between endorheic and exorheic basins. Gui J; Li Z; Zhang B; Xue J; Du F; Si L J Environ Manage; 2023 Sep; 342():118198. PubMed ID: 37270977 [TBL] [Abstract][Full Text] [Related]
16. Historical and projected evolutions of glaciers in response to climate change in High Mountain Asia. Yang L; Zhao G; Mu X; Liu Y; Tian P; Puqiong ; Danzengbandian Environ Res; 2023 Nov; 237(Pt 2):117037. PubMed ID: 37659644 [TBL] [Abstract][Full Text] [Related]
17. Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections. Gao H; Feng Z; Zhang T; Wang Y; He X; Li H; Pan X; Ren Z; Chen X; Zhang W; Duan Z Sci Total Environ; 2021 Apr; 765():142774. PubMed ID: 33572035 [TBL] [Abstract][Full Text] [Related]
18. Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Gao T; Kang S; Zhang Y; Sprenger M; Wang F; Du W; Wang X; Wang X Sci Total Environ; 2020 Jul; 725():138346. PubMed ID: 32302834 [TBL] [Abstract][Full Text] [Related]
19. Climate background, relative rate, and runoff effect of multiphase water transformation in Qilian Mountains, the third pole region. Li Z; Yuan R; Feng Q; Zhang B; Lv Y; Li Y; Wei W; Chen W; Ning T; Gui J; Shi Y Sci Total Environ; 2019 May; 663():315-328. PubMed ID: 30711598 [TBL] [Abstract][Full Text] [Related]
20. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Kääb A; Berthier E; Nuth C; Gardelle J; Arnaud Y Nature; 2012 Aug; 488(7412):495-8. PubMed ID: 22914167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]