These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38852870)

  • 21. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau.
    Qiao B; Zhu L
    Sci Total Environ; 2019 Nov; 693():133399. PubMed ID: 31374510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical impacts of dust particles on alpine glacier meltwater at the Laohugou Glacier basin in western Qilian Mountains, China.
    Dong Z; Qin D; Chen J; Qin X; Ren J; Cui X; Du Z; Kang S
    Sci Total Environ; 2014 Sep; 493():930-42. PubMed ID: 25010943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards understanding various influences on mass balance of the Hoksar Glacier in the Upper Indus Basin using observations.
    Romshoo SA; Murtaza KO; Abdullah T
    Sci Rep; 2022 Sep; 12(1):15669. PubMed ID: 36123388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016.
    Brun F; Berthier E; Wagnon P; Kääb A; Treichler D
    Nat Geosci; 2017 Sep; 10(9):668-673. PubMed ID: 28890734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau.
    Sun X; Wang K; Kang S; Guo J; Zhang G; Huang J; Cong Z; Sun S; Zhang Q
    Environ Pollut; 2017 Jan; 220(Pt B):936-945. PubMed ID: 27823861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights.
    Sun X; Zhang Q; Zhang G; Li M; Li S; Guo J; Dong H; Zhou Y; Kang S; Wang X; Shi J
    Water Res; 2022 Jun; 218():118474. PubMed ID: 35461101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alpine glacier change in the Eastern Altun mountains of Northwest China during 1972-2010.
    Yu X; Lu C
    PLoS One; 2015; 10(2):e0117262. PubMed ID: 25723669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in Central Asia's Water Tower: Past, Present and Future.
    Chen Y; Li W; Deng H; Fang G; Li Z
    Sci Rep; 2016 Oct; 6():35458. PubMed ID: 27762285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrasting the physical and chemical characteristics of dissolved organic matter between glacier and glacial runoff from a mountain glacier on the Tibetan Plateau.
    Zhai L; An Y; Feng L; Qin X; Xu J
    Sci Total Environ; 2022 Nov; 848():157784. PubMed ID: 35926601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climatic and topographic controls on glacial changes (1973-2020) in Shigar Basin, Central Karakoram, Northern Pakistan.
    Ali S; Khan G; Qureshi JA; Hassan M; Kheirandish S
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74889-74899. PubMed ID: 37209347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating mass balance of Parvati glacier in Himalaya using satellite imagery based model.
    Tak S; Keshari AK
    Sci Rep; 2020 Jul; 10(1):12211. PubMed ID: 32699284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Following the flow-Microbial ecology in surface- and groundwaters in the glacial forefield of a rapidly retreating glacier in Iceland.
    Purkamo L; Ó Dochartaigh B; MacDonald A; Cousins C
    Environ Microbiol; 2022 Dec; 24(12):5840-5858. PubMed ID: 35706139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mercury export from a glacier-fed river of Mt. Meili, southeastern Tibetan Plateau.
    Pu T; Kong Y; Kang S; Wang S; Guo J; Jia J; Wu K; Shi X; Wang K; Sun S; Li W
    J Hazard Mater; 2024 Sep; 477():135306. PubMed ID: 39067291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Black carbon and dust in the Third Pole glaciers: Revaluated concentrations, mass absorption cross-sections and contributions to glacier ablation.
    Li Y; Kang S; Zhang X; Chen J; Schmale J; Li X; Zhang Y; Niu H; Li Z; Qin X; He X; Yang W; Zhang G; Wang S; Shao L; Tian L
    Sci Total Environ; 2021 Oct; 789():147746. PubMed ID: 34082201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Characteristics of climate change and its impacts on water resources in Qilian Mountains, China].
    Wang YH; Li DH; Lu GY; Jiang YY; Huang PC
    Ying Yong Sheng Tai Xue Bao; 2022 Oct; 33(10):2805-2812. PubMed ID: 36384617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the relationships between total suspended particles and mercury in meltwater in a typical glacierized basin in the inland Tibetan Plateau.
    Sun X; Zhang Q; Li M; Wang J; Lu Z; Guo J; Kang S; Shi J
    J Hazard Mater; 2023 Jun; 452():131250. PubMed ID: 37004441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contrasting glacier responses to recent climate change in high-mountain Asia.
    Sakai A; Fujita K
    Sci Rep; 2017 Oct; 7(1):13717. PubMed ID: 29057960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass balance estimation of Mulkila glacier, Western Himalayas, using glacier melt model.
    M GP; Guruprasad C; Gopal D; Devaraj S
    Environ Monit Assess; 2022 Sep; 194(10):761. PubMed ID: 36087154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.
    Crossman J; Futter MN; Whitehead PG
    PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976-2019 and basin-wide glacier contribution.
    Zhang G; Bolch T; Chen W; Crétaux JF
    Sci Total Environ; 2021 Jun; 772():145463. PubMed ID: 33578155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.