BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38852983)

  • 21. Controlling Cell Organization in 3D Coculture Spheroids Using DNA Interactions.
    Saemundsson SA; Ganguly S; Curry SD; Goodwin AP; Cha JN
    ACS Biomater Sci Eng; 2023 Jun; 9(6):3185-3192. PubMed ID: 37155244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine.
    Germain N; Dhayer M; Dekiouk S; Marchetti P
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-Scale, Automated Production of Adipose-Derived Stem Cell Spheroids for 3D Bioprinting.
    Kronemberger GS; Miranda GASC; Silva TIG; Gonçalves RM; Granjeiro JM; Baptista LS
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D bioprinting of hepatocytes: core-shell structured co-cultures with fibroblasts for enhanced functionality.
    Taymour R; Kilian D; Ahlfeld T; Gelinsky M; Lode A
    Sci Rep; 2021 Mar; 11(1):5130. PubMed ID: 33664366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions.
    Mazzaglia C; Sheng Y; Rodrigues LN; Lei IM; Shields JD; Huang YYS
    Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36626838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Cell Culture Models to Investigate Oral Carcinogenesis: A Scoping Review.
    Chitturi Suryaprakash RT; Kujan O; Shearston K; Farah CS
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33327663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Coculture Based, 3D Bioprinted Ovarian Tumor Model Combining Cancer Cells and Cancer Associated Fibroblasts.
    Baka Z; Godier C; Lamy L; Mallick A; Gribova V; Figarol A; Bezdetnaya L; Chateau A; Magne Z; Stiefel M; Louaguef D; Lavalle P; Gaffet E; Joubert O; Alem H
    Macromol Biosci; 2023 Mar; 23(3):e2200434. PubMed ID: 36448191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells.
    Dornhof J; Zieger V; Kieninger J; Frejek D; Zengerle R; Urban GA; Kartmann S; Weltin A
    Lab Chip; 2022 Nov; 22(22):4369-4381. PubMed ID: 36254669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of a Desmoplastic Tumor Microenvironment for Colon Cancer Drug Sensitivity: A Study with 3D Chimeric Tumor Spheroids.
    Goudar VS; Koduri MP; Ta YN; Chen Y; Chu LA; Lu LS; Tseng FG
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48478-48491. PubMed ID: 34633791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model.
    Horder H; Guaza Lasheras M; Grummel N; Nadernezhad A; Herbig J; Ergün S; Teßmar J; Groll J; Fabry B; Bauer-Kreisel P; Blunk T
    Cells; 2021 Apr; 10(4):. PubMed ID: 33916870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering an in vitro air-blood barrier by 3D bioprinting.
    Horváth L; Umehara Y; Jud C; Blank F; Petri-Fink A; Rothen-Rutishauser B
    Sci Rep; 2015 Jan; 5():7974. PubMed ID: 25609567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting.
    Sreepadmanabh M; Ganesh M; Bhat R; Bhattacharjee T
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 37146614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells.
    Sbrana FV; Pinos R; Barbaglio F; Ribezzi D; Scagnoli F; Scarfò L; Redwan IN; Martinez H; Farè S; Ghia P; Scielzo C
    Front Immunol; 2021; 12():639572. PubMed ID: 34012434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioprinting of 3D breast epithelial spheroids for human cancer models.
    Swaminathan S; Hamid Q; Sun W; Clyne AM
    Biofabrication; 2019 Jan; 11(2):025003. PubMed ID: 30616234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspiration-assisted bioprinting for precise positioning of biologics.
    Ayan B; Heo DN; Zhang Z; Dey M; Povilianskas A; Drapaca C; Ozbolat IT
    Sci Adv; 2020 Mar; 6(10):eaaw5111. PubMed ID: 32181332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture.
    Mondal A; Gebeyehu A; Miranda M; Bahadur D; Patel N; Ramakrishnan S; Rishi AK; Singh M
    Sci Rep; 2019 Dec; 9(1):19914. PubMed ID: 31882581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Bioprinting and Stem Cells.
    Moore CA; Shah NN; Smith CP; Rameshwar P
    Methods Mol Biol; 2018; 1842():93-103. PubMed ID: 30196404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protocol to generate scaffold-free, multicomponent 3D melanoma spheroid models for preclinical drug testing.
    Angeli C; Wroblewska JP; Klein E; Margue C; Kreis S
    STAR Protoc; 2024 Jun; 5(2):103058. PubMed ID: 38748881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.