BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38853610)

  • 1. Thermostable WW-Domain Scaffold to Design Functional β-Sheet Miniproteins.
    Lindner C; Friemel A; Schwegler N; Timmermann L; Pham TL; Reusche V; Kovermann M; Thomas F
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38853610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Functional Globular β-Sheet Miniproteins.
    Pham TL; Thomas F
    Chembiochem; 2024 Apr; 25(7):e202300745. PubMed ID: 38275210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of Thermostability and Binding Affinity in Metal-binding WW-Domain Minireceptors.
    Pham TL; Conde González MR; Fazliev S; Kishore A; Comba P; Thomas F
    Chembiochem; 2024 Feb; 25(4):e202300715. PubMed ID: 38127995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains.
    Neitz H; Paul NB; Häge FR; Lindner C; Graebner R; Kovermann M; Thomas F
    Chem Sci; 2022 Aug; 13(31):9079-9090. PubMed ID: 36091217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and NMR conformational study of a beta-sheet peptide based on Betanova and WW domains.
    Fernández-Escamilla AM; Ventura S; Serrano L; Jiménez MA
    Protein Sci; 2006 Oct; 15(10):2278-89. PubMed ID: 16963647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of binding affinity in a WW domain probed by phage display.
    Dalby PA; Hoess RH; DeGrado WF
    Protein Sci; 2000 Dec; 9(12):2366-76. PubMed ID: 11206058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An autonomously folding beta-hairpin derived from the human YAP65 WW domain: attempts to define a minimum ligand-binding motif.
    Espinosa JF; Syud FA; Gellman SH
    Biopolymers; 2005; 80(2-3):303-11. PubMed ID: 15800888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hPin1 WW N-terminal domain boundaries on function, protein stability, and folding.
    Jäger M; Nguyen H; Dendle M; Gruebele M; Kelly JW
    Protein Sci; 2007 Jul; 16(7):1495-501. PubMed ID: 17586778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the beta-sheet of the WW domain: A molecular dynamics simulation study.
    Ibragimova GT; Wade RC
    Biophys J; 1999 Oct; 77(4):2191-8. PubMed ID: 10512838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and binding specificity of FBP11/HYPA WW domain as Group-II/III.
    Kato Y; Hino Y; Nagata K; Tanokura M
    Proteins; 2006 Apr; 63(1):227-34. PubMed ID: 16463264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.
    Qiao X; Liu Y; Luo L; Chen L; Zhao C; Ai X
    Biochem Biophys Res Commun; 2017 May; 487(2):470-476. PubMed ID: 28431929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.
    Webb C; Upadhyay A; Giuntini F; Eggleston I; Furutani-Seiki M; Ishima R; Bagby S
    Biochemistry; 2011 Apr; 50(16):3300-9. PubMed ID: 21417403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the role of the WW2 domain on tandem WW-PPxY motif interactions of oxidoreductase WWOX.
    Rotem-Bamberger S; Fahoum J; Keinan-Adamsky K; Tsaban T; Avraham O; Shalev DE; Chill JH; Schueler-Furman O
    J Biol Chem; 2022 Aug; 298(8):102145. PubMed ID: 35716775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the mechanism of beta-sheet folding from a chemical and biological perspective.
    Jager M; Deechongkit S; Koepf EK; Nguyen H; Gao J; Powers ET; Gruebele M; Kelly JW
    Biopolymers; 2008; 90(6):751-8. PubMed ID: 18844292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes.
    Meng G; Dai F; Tong X; Li N; Ding X; Song J; Lu C
    Mol Genet Genomics; 2015 Jun; 290(3):807-24. PubMed ID: 25424044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the ligand-binding specificity and analyzing the folding state of SPOT-synthesized FBP28 WW domain variants.
    Przezdziak J; Tremmel S; Kretzschmar I; Beyermann M; Bienert M; Volkmer-Engert R
    Chembiochem; 2006 May; 7(5):780-8. PubMed ID: 16575938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein.
    Jäger M; Dendle M; Kelly JW
    Protein Sci; 2009 Aug; 18(8):1806-13. PubMed ID: 19565466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of WW domains and design of a WW prototype.
    Macias MJ; Gervais V; Civera C; Oschkinat H
    Nat Struct Biol; 2000 May; 7(5):375-9. PubMed ID: 10802733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands.
    Macias MJ; Wiesner S; Sudol M
    FEBS Lett; 2002 Feb; 513(1):30-7. PubMed ID: 11911877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of an atypical WW domain in a novel beta-clam-like dimeric form.
    Ohnishi S; Güntert P; Koshiba S; Tomizawa T; Akasaka R; Tochio N; Sato M; Inoue M; Harada T; Watanabe S; Tanaka A; Shirouzu M; Kigawa T; Yokoyama S
    FEBS Lett; 2007 Feb; 581(3):462-8. PubMed ID: 17239860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.