These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 38853912)
1. Cryo-EM and Solid State NMR Together Provide a More Comprehensive Structural Investigation of Protein Fibrils. Fonda BD; Kato M; Li Y; Murray DT bioRxiv; 2024 Jun; ():. PubMed ID: 38853912 [TBL] [Abstract][Full Text] [Related]
2. Cryo-EM and solid state NMR together provide a more comprehensive structural investigation of protein fibrils. Fonda BD; Kato M; Li Y; Murray DT Protein Sci; 2024 Oct; 33(10):e5168. PubMed ID: 39276003 [TBL] [Abstract][Full Text] [Related]
3. SAA fibrils involved in AA amyloidosis are similar in bulk and by single particle reconstitution: A MAS solid-state NMR study. Sundaria A; Liberta F; Savran D; Sarkar R; Rodina N; Peters C; Schwierz N; Haupt C; Schmidt M; Reif B J Struct Biol X; 2022; 6():100069. PubMed ID: 35924280 [TBL] [Abstract][Full Text] [Related]
4. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Tycko R; Wickner RB Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335 [TBL] [Abstract][Full Text] [Related]
5. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. Matlahov I; Boatz JC; van der Wel PCA J Struct Biol X; 2022; 6():100077. PubMed ID: 36419510 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Antzutkin ON; Leapman RD; Balbach JJ; Tycko R Biochemistry; 2002 Dec; 41(51):15436-50. PubMed ID: 12484785 [TBL] [Abstract][Full Text] [Related]
7. Automated picking of amyloid fibrils from cryo-EM images for helical reconstruction with RELION. Thurber KR; Yin Y; Tycko R J Struct Biol; 2021 Jun; 213(2):107736. PubMed ID: 33831509 [TBL] [Abstract][Full Text] [Related]
8. Structures of brain-derived 42-residue amyloid-β fibril polymorphs with unusual molecular conformations and intermolecular interactions. Lee M; Yau WM; Louis JM; Tycko R Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2218831120. PubMed ID: 36893281 [TBL] [Abstract][Full Text] [Related]
9. Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Heise H; Hoyer W; Becker S; Andronesi OC; Riedel D; Baldus M Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15871-6. PubMed ID: 16247008 [TBL] [Abstract][Full Text] [Related]
10. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. Lutter L; Al-Hilaly YK; Serpell CJ; Tuite MF; Wischik CM; Serpell LC; Xue WF J Mol Biol; 2022 Apr; 434(7):167466. PubMed ID: 35077765 [TBL] [Abstract][Full Text] [Related]
11. Solid-state NMR investigation of the involvement of the P2 region in tau amyloid fibrils. Savastano A; Jaipuria G; Andreas L; Mandelkow E; Zweckstetter M Sci Rep; 2020 Dec; 10(1):21210. PubMed ID: 33273615 [TBL] [Abstract][Full Text] [Related]
12. Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning. Weber M; Bäuerle A; Schmidt M; Neumann M; Fändrich M; Ropinski T; Schmidt V J Microsc; 2020 Jan; 277(1):12-22. PubMed ID: 31859366 [TBL] [Abstract][Full Text] [Related]
13. Structure of the cytoplasmic ring of the Zhu X; Huang G; Zeng C; Zhan X; Liang K; Xu Q; Zhao Y; Wang P; Wang Q; Zhou Q; Tao Q; Liu M; Lei J; Yan C; Shi Y Science; 2022 Jun; 376(6598):eabl8280. PubMed ID: 35679404 [TBL] [Abstract][Full Text] [Related]
14. Milligram-scale assembly and NMR fingerprint of tau fibrils adopting the Alzheimer's disease fold. Duan P; El Mammeri N; Hong M J Biol Chem; 2024 Jun; 300(6):107326. PubMed ID: 38679331 [TBL] [Abstract][Full Text] [Related]
15. Conformational Dynamics of an α-Synuclein Fibril upon Receptor Binding Revealed by Insensitive Nuclei Enhanced by Polarization Transfer-Based Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy. Zhang S; Li J; Xu Q; Xia W; Tao Y; Shi C; Li D; Xiang S; Liu C J Am Chem Soc; 2023 Mar; 145(8):4473-4484. PubMed ID: 36794997 [TBL] [Abstract][Full Text] [Related]
16. Using NMR Chemical Shifts and Cryo-EM Density Restraints in Iterative Rosetta-MD Protein Structure Refinement. Leelananda SP; Lindert S J Chem Inf Model; 2020 May; 60(5):2522-2532. PubMed ID: 31872764 [TBL] [Abstract][Full Text] [Related]
17. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Lee M; Ghosh U; Thurber KR; Kato M; Tycko R Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287 [TBL] [Abstract][Full Text] [Related]
18. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Demers JP; Habenstein B; Loquet A; Kumar Vasa S; Giller K; Becker S; Baker D; Lange A; Sgourakis NG Nat Commun; 2014 Sep; 5():4976. PubMed ID: 25264107 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Behkamal B; Naghibzadeh M; Saberi MR; Tehranizadeh ZA; Pagnani A; Al Nasr K Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944417 [TBL] [Abstract][Full Text] [Related]
20. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR. Balbach JJ; Ishii Y; Antzutkin ON; Leapman RD; Rizzo NW; Dyda F; Reed J; Tycko R Biochemistry; 2000 Nov; 39(45):13748-59. PubMed ID: 11076514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]