These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38854001)

  • 61. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson's disease, with insights into
    Wang Z; Chan SW; Zhao H; Miu KK; Chan WY
    Zool Res; 2023 May; 44(3):559-576. PubMed ID: 37161651
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin.
    Im E; Yoo L; Hyun M; Shin WH; Chung KC
    Open Biol; 2016 Aug; 6(8):. PubMed ID: 27534820
    [TBL] [Abstract][Full Text] [Related]  

  • 63. PINK1 as a molecular checkpoint in the maintenance of mitochondrial function and integrity.
    Koh H; Chung J
    Mol Cells; 2012 Jul; 34(1):7-13. PubMed ID: 22610403
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin.
    Yang Y; Gehrke S; Imai Y; Huang Z; Ouyang Y; Wang JW; Yang L; Beal MF; Vogel H; Lu B
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10793-8. PubMed ID: 16818890
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 67. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria.
    Liu S; Sawada T; Lee S; Yu W; Silverio G; Alapatt P; Millan I; Shen A; Saxton W; Kanao T; Takahashi R; Hattori N; Imai Y; Lu B
    PLoS Genet; 2012; 8(3):e1002537. PubMed ID: 22396657
    [TBL] [Abstract][Full Text] [Related]  

  • 68. PBX1 attenuates 6-OHDA-induced oxidative stress and apoptosis and affects PINK1/PARKIN expression in dopaminergic neurons via FOXA1.
    Li B; An D; Zhu S
    Cytotechnology; 2022 Apr; 74(2):217-229. PubMed ID: 35464170
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Parkin and PINK1: much more than mitophagy.
    Scarffe LA; Stevens DA; Dawson VL; Dawson TM
    Trends Neurosci; 2014 Jun; 37(6):315-24. PubMed ID: 24735649
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Linking Heat Shock Protein 70 and Parkin in Parkinson's Disease.
    Zhao Z; Li Z; Du F; Wang Y; Wu Y; Lim KL; Li L; Yang N; Yu C; Zhang C
    Mol Neurobiol; 2023 Dec; 60(12):7044-7059. PubMed ID: 37526897
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.
    Pickrell AM; Huang CH; Kennedy SR; Ordureau A; Sideris DP; Hoekstra JG; Harper JW; Youle RJ
    Neuron; 2015 Jul; 87(2):371-81. PubMed ID: 26182419
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
    Joselin AP; Hewitt SJ; Callaghan SM; Kim RH; Chung YH; Mak TW; Shen J; Slack RS; Park DS
    Hum Mol Genet; 2012 Nov; 21(22):4888-903. PubMed ID: 22872702
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Overexpression of Buffy enhances the loss of parkin and suppresses the loss of Pink1 phenotypes in Drosophila.
    M'Angale PG; Staveley BE
    Genome; 2017 Mar; 60(3):241-247. PubMed ID: 28106473
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inhibition of miR-421 Preserves Mitochondrial Function and Protects against Parkinson's Disease Pathogenesis via Pink1/Parkin-Dependent Mitophagy.
    Dong X; He X; Yang L; Li Q; Xu Y
    Dis Markers; 2022; 2022():5186252. PubMed ID: 35664430
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment.
    Chin LS; Li L
    Transl Neurodegener; 2016; 5():1. PubMed ID: 26740872
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Perspective: Low Risk of Parkinson's Disease in Quasi-Vegan Cultures May Reflect GCN2-Mediated Upregulation of Parkin.
    McCarty MF; Lerner A
    Adv Nutr; 2021 Mar; 12(2):355-362. PubMed ID: 32945884
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations.
    Geisler S; Holmström KM; Treis A; Skujat D; Weber SS; Fiesel FC; Kahle PJ; Springer W
    Autophagy; 2010 Oct; 6(7):871-8. PubMed ID: 20798600
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fingolimod exerts neuroprotection by regulating S1PR1 mediated BNIP3-PINK1-Parkin dependent mitophagy in rotenone induced mouse model of Parkinson's disease.
    Rajan S; Sood A; Jain R; Kamatham PT; Khatri DK
    Neurosci Lett; 2024 Jan; 820():137596. PubMed ID: 38101611
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila.
    Deng H; Dodson MW; Huang H; Guo M
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14503-8. PubMed ID: 18799731
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recessive Parkinson's disease.
    Kubo S; Hattori N; Mizuno Y
    Mov Disord; 2006 Jul; 21(7):885-93. PubMed ID: 16615060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.