These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38854022)

  • 1. Using Artificial Intelligence to Predict Heart Failure Risk from Single-lead Electrocardiographic Signals: A Multinational Assessment.
    Dhingra LS; Aminorroaya A; Camargos AP; Khunte A; Sangha V; McIntyre D; Chow CK; Asselbergs FW; Brant LC; Barreto SM; Ribeiro ALP; Krumholz HM; Oikonomou EK; Khera R
    medRxiv; 2024 May; ():. PubMed ID: 38854022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable Risk Stratification for Heart Failure Using Artificial Intelligence applied to 12-lead Electrocardiographic Images: A Multinational Study.
    Dhingra LS; Aminorroaya A; Sangha V; Camargos AP; Asselbergs FW; Brant LC; Barreto SM; Ribeiro ALP; Krumholz HM; Oikonomou EK; Khera R
    medRxiv; 2024 Apr; ():. PubMed ID: 38633808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices.
    Khunte A; Sangha V; Oikonomou EK; Dhingra LS; Aminorroaya A; Mortazavi BJ; Coppi A; Brandt CA; Krumholz HM; Khera R
    NPJ Digit Med; 2023 Jul; 6(1):124. PubMed ID: 37433874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serum metabolomics improves risk stratification for incident heart failure.
    Oexner RR; Ahn H; Theofilatos K; Shah RA; Schmitt R; Chowienczyk P; Zoccarato A; Shah AM
    Eur J Heart Fail; 2024 Apr; 26(4):829-840. PubMed ID: 38623713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning to Predict Cardiac Magnetic Resonance-Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs.
    Khurshid S; Friedman S; Pirruccello JP; Di Achille P; Diamant N; Anderson CD; Ellinor PT; Batra P; Ho JE; Philippakis AA; Lubitz SA
    Circ Cardiovasc Imaging; 2021 Jun; 14(6):e012281. PubMed ID: 34126762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Left Ventricular Systolic Dysfunction From Electrocardiographic Images.
    Sangha V; Nargesi AA; Dhingra LS; Khunte A; Mortazavi BJ; Ribeiro AH; Banina E; Adeola O; Garg N; Brandt CA; Miller EJ; Ribeiro ALP; Velazquez EJ; Giatti L; Barreto SM; Foppa M; Yuan N; Ouyang D; Krumholz HM; Khera R
    Circulation; 2023 Aug; 148(9):765-777. PubMed ID: 37489538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure.
    Akbilgic O; Butler L; Karabayir I; Chang PP; Kitzman DW; Alonso A; Chen LY; Soliman EZ
    Eur Heart J Digit Health; 2021 Dec; 2(4):626-634. PubMed ID: 34993487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multicenter Evaluation of the Impact of Therapies on Deep Learning-based Electrocardiographic Hypertrophic Cardiomyopathy Markers.
    Dhingra LS; Sangha V; Aminorroaya A; Bryde R; Gaballa A; Ali AH; Mehra N; Krumholz HM; Sen S; Kramer CM; Martinez MW; Desai MY; Oikonomou EK; Khera R
    medRxiv; 2024 Mar; ():. PubMed ID: 38293023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECG-Based Deep Learning and Clinical Risk Factors to Predict Atrial Fibrillation.
    Khurshid S; Friedman S; Reeder C; Di Achille P; Diamant N; Singh P; Harrington LX; Wang X; Al-Alusi MA; Sarma G; Foulkes AS; Ellinor PT; Anderson CD; Ho JE; Philippakis AA; Batra P; Lubitz SA
    Circulation; 2022 Jan; 145(2):122-133. PubMed ID: 34743566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression.
    Oikonomou EK; Holste G; Yuan N; Coppi A; McNamara RL; Haynes NA; Vora AN; Velazquez EJ; Li F; Menon V; Kapadia SR; Gill TM; Nadkarni GN; Krumholz HM; Wang Z; Ouyang D; Khera R
    JAMA Cardiol; 2024 Jun; 9(6):534-544. PubMed ID: 38581644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population.
    Kashou AH; Medina-Inojosa JR; Noseworthy PA; Rodeheffer RJ; Lopez-Jimenez F; Attia IZ; Kapa S; Scott CG; Lee AT; Friedman PA; McKie PM
    Mayo Clin Proc; 2021 Oct; 96(10):2576-2586. PubMed ID: 34120755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence-based identification of left ventricular systolic dysfunction from 12-lead electrocardiograms: external validation and advanced application of an existing model.
    König S; Hohenstein S; Nitsche A; Pellissier V; Leiner J; Stellmacher L; Hindricks G; Bollmann A
    Eur Heart J Digit Health; 2024 Mar; 5(2):144-151. PubMed ID: 38505486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ten-Year Risk-Prediction Equations for Incident Heart Failure Hospitalizations in Chronic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort Study and the Multi-Ethnic Study of Atherosclerosis.
    Mehta R; Ning H; Bansal N; Cohen J; Srivastava A; Dobre M; Michos ED; Rahman M; Townsend R; Seliger S; Lash JP; Isakova T; Lloyd-Jones DM; Khan SS
    J Card Fail; 2022 Apr; 28(4):540-550. PubMed ID: 34763078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence-enhanced risk stratification of cancer therapeutics-related cardiac dysfunction using electrocardiographic images.
    Oikonomou EK; Sangha V; Dhingra LS; Aminorroaya A; Coppi A; Krumholz HM; Baldassarre LA; Khera R
    medRxiv; 2024 Mar; ():. PubMed ID: 38562897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs.
    Butler L; Ivanov A; Celik T; Karabayir I; Chinthala L; Hudson MM; Ness KK; Mulrooney DA; Dixon SB; Tootooni MS; Doerr AJ; Jaeger BC; Davis RL; McManus DD; Herrington D; Akbilgic O
    Cardiovasc Digit Health J; 2024 Jun; 5(3):115-121. PubMed ID: 38989042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multimodality Video-Based AI Biomarker For Aortic Stenosis Development And Progression.
    Oikonomou EK; Holste G; Yuan N; Coppi A; McNamara RL; Haynes N; Vora AN; Velazquez EJ; Li F; Menon V; Kapadia SR; Gill TM; Nadkarni GN; Krumholz HM; Wang Z; Ouyang D; Khera R
    medRxiv; 2024 Feb; ():. PubMed ID: 37808685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study Protocol for the Artificial Intelligence-Driven Evaluation of Structural Heart Diseases Using Wearable Electrocardiogram (ID-SHD).
    Aminorroaya A; Dhingra LS; Camargos AP; Shankar SV; Khunte A; Sangha V; Sen S; McNamara RL; Haynes N; Oikonomou EK; Khera R
    medRxiv; 2024 Jun; ():. PubMed ID: 38562867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalizable electrocardiogram-based artificial intelligence model for 10-year heart failure risk prediction.
    Butler L; Karabayir I; Kitzman DW; Alonso A; Tison GH; Chen LY; Chang PP; Clifford G; Soliman EZ; Akbilgic O
    Cardiovasc Digit Health J; 2023 Dec; 4(6):183-190. PubMed ID: 38222101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography.
    Shiraishi Y; Goto S; Niimi N; Katsumata Y; Goda A; Takei M; Saji M; Sano M; Fukuda K; Kohno T; Yoshikawa T; Kohsaka S
    Europace; 2023 Mar; 25(3):922-930. PubMed ID: 36610062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence for ventricular arrhythmia capability using ambulatory electrocardiograms.
    Barker J; Li X; Kotb A; Mavilakandy A; Antoun I; Thaitirarot C; Koev I; Man S; Schlindwein FS; Dhutia H; Chin SH; Tyukin I; Nicolson WB; Ng GA
    Eur Heart J Digit Health; 2024 May; 5(3):384-388. PubMed ID: 38774363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.