BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38854155)

  • 1. Generating human AMN and cALD iPSC-derived astrocytes with potential for modeling X-linked adrenoleukodystrophy phenotypes.
    Kaur N; Singh J
    bioRxiv; 2024 Jun; ():. PubMed ID: 38854155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IPSC-Derived Astrocytes to Model Neuroinflammatory and Metabolic Responses in X-linked Adrenoleukodystrophy.
    Parasar P; Kaur N; Singh J
    J Biotechnol Biomed; 2023; 6(3):281-293. PubMed ID: 38077449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Characterization of IPSC-Derived Brain Cells as a Model for X-Linked Adrenoleukodystrophy.
    Baarine M; Khan M; Singh A; Singh I
    PLoS One; 2015; 10(11):e0143238. PubMed ID: 26581106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA Profiling Identifies miR-196a as Differentially Expressed in Childhood Adrenoleukodystrophy and Adult Adrenomyeloneuropathy.
    Shah N; Singh I
    Mol Neurobiol; 2017 Mar; 54(2):1392-1403. PubMed ID: 26843114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced pluripotent stem cell models from X-linked adrenoleukodystrophy patients.
    Jang J; Kang HC; Kim HS; Kim JY; Huh YJ; Kim DS; Yoo JE; Lee JA; Lim B; Lee J; Yoon TM; Park IH; Hwang DY; Daley GQ; Kim DW
    Ann Neurol; 2011 Sep; 70(3):402-9. PubMed ID: 21721033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of two induced pluripotent stem cell (iPSC) lines from X-linked adrenoleukodystrophy (X-ALD) patients with adrenomyeloneuropathy (AMN).
    Son D; Quan Z; Kang PJ; Park G; Kang HC; You S
    Stem Cell Res; 2017 Dec; 25():46-49. PubMed ID: 29065337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [X-linked adrenoleukodystrophy].
    Aubourg P
    Ann Endocrinol (Paris); 2007 Dec; 68(6):403-11. PubMed ID: 17532287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gene expression profiles of induced pluripotent stem cells from individuals with childhood cerebral adrenoleukodystrophy are consistent with proposed mechanisms of pathogenesis.
    Wang XM; Yik WY; Zhang P; Lu W; Dranchak PK; Shibata D; Steinberg SJ; Hacia JG
    Stem Cell Res Ther; 2012 Oct; 3(5):39. PubMed ID: 23036268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy.
    Asheuer M; Bieche I; Laurendeau I; Moser A; Hainque B; Vidaud M; Aubourg P
    Hum Mol Genet; 2005 May; 14(10):1293-303. PubMed ID: 15800013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes.
    Singh J; Khan M; Singh I
    J Lipid Res; 2011 Nov; 52(11):2056-69. PubMed ID: 21891797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeic acid phenethyl ester induces adrenoleukodystrophy (Abcd2) gene in human X-ALD fibroblasts and inhibits the proinflammatory response in Abcd1/2 silenced mouse primary astrocytes.
    Singh J; Khan M; Singh I
    Biochim Biophys Acta; 2013 Apr; 1831(4):747-58. PubMed ID: 23318275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant Capacity and Superoxide Dismutase Activity in Adrenoleukodystrophy.
    Turk BR; Theisen BE; Nemeth CL; Marx JS; Shi X; Rosen M; Jones RO; Moser AB; Watkins PA; Raymond GV; Tiffany C; Fatemi A
    JAMA Neurol; 2017 May; 74(5):519-524. PubMed ID: 28288261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy.
    Schlüter A; Espinosa L; Fourcade S; Galino J; López E; Ilieva E; Morató L; Asheuer M; Cook T; McLaren A; Reid J; Kelly F; Bates S; Aubourg P; Galea E; Pujol A
    Hum Mol Genet; 2012 Mar; 21(5):1062-77. PubMed ID: 22095690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies.
    Ma CY; Li C; Zhou X; Zhang Z; Jiang H; Liu H; Chen HJ; Tse HF; Liao C; Lian Q
    Biomed Pharmacother; 2021 Nov; 143():112214. PubMed ID: 34560537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction.
    Wiesinger C; Kunze M; Regelsberger G; Forss-Petter S; Berger J
    J Biol Chem; 2013 Jun; 288(26):19269-79. PubMed ID: 23671276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABCD1 translation-initiator mutation demonstrates genotype-phenotype correlation for AMN.
    O'Neill GN; Aoki M; Brown RH
    Neurology; 2001 Dec; 57(11):1956-62. PubMed ID: 11739809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis.
    Singh I; Pujol A
    Brain Pathol; 2010 Jul; 20(4):838-44. PubMed ID: 20626745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant Response in Human X-Linked Adrenoleukodystrophy Fibroblasts.
    Petrillo S; D'Amico J; Nicita F; Torda C; Vasco G; Bertini ES; Cappa M; Piemonte F
    Antioxidants (Basel); 2022 Oct; 11(11):. PubMed ID: 36358497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendrimer-N-acetyl-L-cysteine modulates monophagocytic response in adrenoleukodystrophy.
    Turk BR; Nemeth CL; Marx JS; Tiffany C; Jones R; Theisen B; Kambhampati S; Ramireddy R; Singh S; Rosen M; Kaufman ML; Murray CF; Watkins PA; Kannan S; Kannan R; Fatemi A
    Ann Neurol; 2018 Sep; 84(3):452-462. PubMed ID: 30069915
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.