These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38854488)

  • 21. Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review.
    Meng S; Wang N; Cao X
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors: A Comprehensive Review.
    Garland NT; Kaveti R; Bandodkar AJ
    Adv Mater; 2023 Dec; 35(52):e2303197. PubMed ID: 37358398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics.
    Gołąbek J; Strankowski M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patchable and Implantable 2D Nanogenerator.
    Han SA; Lee JH; Seung W; Lee J; Kim SW; Kim JH
    Small; 2021 Mar; 17(9):e1903519. PubMed ID: 31588681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices.
    Dinis H; Colmiais I; Mendes PM
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis.
    Herbert R; Lim HR; Park S; Kim JH; Yeo WH
    Adv Healthc Mater; 2021 Sep; 10(17):e2100158. PubMed ID: 34019731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.
    Pu X; Hu W; Wang ZL
    Small; 2018 Jan; 14(1):. PubMed ID: 29194960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bootstrapped Comparator-Switched Active Rectifying Circuit for Wirelessly Powered Integrated Miniaturized Energy Sensing Systems.
    Gong CA; Li SW; Shiue MT
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies.
    Hu X; Bao X; Zhang M; Fang S; Liu K; Wang J; Liu R; Kim SH; Baughman RH; Ding J
    Adv Mater; 2023 Dec; 35(49):e2303035. PubMed ID: 37209369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications.
    Dong L; Closson AB; Jin C; Trase I; Chen Z; Zhang JXJ
    Adv Mater Technol; 2019 Oct; 4(10):. PubMed ID: 33829079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powering the future: Exploring self-charging cardiac implantable electronic devices and the Qi revolution.
    Bilal M; Syed NN; Jamil Y; Tariq A; Khan HR
    Pacing Clin Electrophysiol; 2024 Apr; 47(4):542-550. PubMed ID: 38407386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications.
    Jiang L; Yang Y; Chen Y; Zhou Q
    Nano Energy; 2020 Nov; 77():. PubMed ID: 32905454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autocharging Techniques for Implantable Medical Applications.
    Owida HA; Al-Nabulsi JI; Turab NM; Alnaimat F; Rababah H; Shakour MY
    Int J Biomater; 2021; 2021():6074657. PubMed ID: 34712329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators.
    Yang L; Ma Z; Tian Y; Meng B; Peng Z
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34200150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators.
    Wang C; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations.
    Riaz A; Sarker MR; Saad MHM; Mohamed R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications.
    Turner BL; Senevirathne S; Kilgour K; McArt D; Biggs M; Menegatti S; Daniele MA
    Adv Healthc Mater; 2021 Sep; 10(17):e2100986. PubMed ID: 34235886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics.
    Li J; Zhao J; Rogers JA
    Acc Chem Res; 2019 Jan; 52(1):53-62. PubMed ID: 30525449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy scavenging sources for biomedical sensors.
    Romero E; Warrington RO; Neuman MR
    Physiol Meas; 2009 Sep; 30(9):R35-62. PubMed ID: 19687530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.