These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38854799)

  • 21. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Associations between asymmetry and reactive balance control during split-belt walking.
    Cornwell T; Novotny R; Finley JM
    J Biomech; 2024 Jul; 172():112221. PubMed ID: 38972274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands.
    Solis-Escalante T; van der Cruijsen J; de Kam D; van Kordelaar J; Weerdesteyn V; Schouten AC
    Neuroimage; 2019 Mar; 188():557-571. PubMed ID: 30590120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct locomotor adaptation between conventional walking and walking with a walker.
    Obata H; Ogawa T; Kaneko N; Ishikawa K; Nakazawa K
    Exp Brain Res; 2024 Aug; 242(8):1861-1870. PubMed ID: 38856929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive control of dynamic balance in human gait on a split-belt treadmill.
    Buurke TJW; Lamoth CJC; Vervoort D; van der Woude LHV; den Otter R
    J Exp Biol; 2018 Jul; 221(Pt 13):. PubMed ID: 29773683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cortical recruitment and functional dynamics in postural control adaptation and habituation during vibratory proprioceptive stimulation.
    Edmunds KJ; Petersen H; Hassan M; Yassine S; Olivieri A; Barollo F; Friðriksdóttir R; Edmunds P; Gíslason MK; Fratini A; Gargiulo P
    J Neural Eng; 2019 Apr; 16(2):026037. PubMed ID: 30754028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gradual increase of perturbation load induces a longer retention of locomotor adaptation in children with cerebral palsy.
    Tang R; Kim J; Gaebler-Spira DJ; Wu M
    Hum Mov Sci; 2019 Feb; 63():20-33. PubMed ID: 30481722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Restricted vision increases sensorimotor cortex involvement in human walking.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neurophysiol; 2017 Oct; 118(4):1943-1951. PubMed ID: 28679843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Midfrontal theta dynamics index the monitoring of postural stability.
    Stokkermans M; Solis-Escalante T; Cohen MX; Weerdesteyn V
    Cereb Cortex; 2023 Mar; 33(7):3454-3466. PubMed ID: 36066445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characteristics of First Recovery Step Response following Unexpected Loss of Balance during Walking: A Dynamic Approach.
    Nachmani H; Shani G; Shapiro A; Melzer I
    Gerontology; 2020; 66(4):362-370. PubMed ID: 32069450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does increased gait variability improve stability when faced with an expected balance perturbation during treadmill walking?
    Nestico J; Novak A; Perry SD; Mansfield A
    Gait Posture; 2021 May; 86():94-100. PubMed ID: 33711616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Balance perturbation-evoked cortical N1 responses are larger when stepping and not influenced by motor planning.
    Payne AM; Ting LH
    J Neurophysiol; 2020 Dec; 124(6):1875-1884. PubMed ID: 33052770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locomotor adaptation and locomotor adaptive learning in Parkinson's disease and normal aging.
    Roemmich RT; Nocera JR; Stegemöller EL; Hassan A; Okun MS; Hass CJ
    Clin Neurophysiol; 2014 Feb; 125(2):313-9. PubMed ID: 23916406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrocortical activity changes in response to unpredictable trip perturbations induced by a split-belt treadmill.
    An J; Yoo D; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():110-113. PubMed ID: 31945856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.