These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38855220)
1. Recognition of sports and daily activities through deep learning and convolutional block attention. Mekruksavanich S; Phaphan W; Hnoohom N; Jitpattanakul A PeerJ Comput Sci; 2024; 10():e2100. PubMed ID: 38855220 [TBL] [Abstract][Full Text] [Related]
2. A CNN-CBAM-BIGRU model for protein function prediction. Sharma L; Deepak A; Ranjan A; Krishnasamy G Stat Appl Genet Mol Biol; 2024 Jan; 23(1):. PubMed ID: 38943434 [TBL] [Abstract][Full Text] [Related]
3. CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture. Praharsha CH; Poulose A Comput Biol Med; 2024 Sep; 180():108945. PubMed ID: 39094328 [TBL] [Abstract][Full Text] [Related]
4. Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices. Muniasamy A Technol Health Care; 2024 Aug; ():. PubMed ID: 39269866 [TBL] [Abstract][Full Text] [Related]
5. Wearable Bioimpedance-Based Deep Learning Techniques for Live Fish Health Assessment under Waterless and Low-Temperature Conditions. Zhang Y; Chen L; Feng H; Xiao X; Nikitina MA; Zhang X Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837040 [TBL] [Abstract][Full Text] [Related]
6. Pedagogical sentiment analysis based on the BERT-CNN-BiGRU-attention model in the context of intercultural communication barriers. Bi X; Zhang T PeerJ Comput Sci; 2024; 10():e2166. PubMed ID: 38983236 [TBL] [Abstract][Full Text] [Related]
7. Robust human locomotion and localization activity recognition over multisensory. Khan D; Alonazi M; Abdelhaq M; Al Mudawi N; Algarni A; Jalal A; Liu H Front Physiol; 2024; 15():1344887. PubMed ID: 38449788 [TBL] [Abstract][Full Text] [Related]
8. On the Use of a Convolutional Block Attention Module in Deep Learning-Based Human Activity Recognition with Motion Sensors. Agac S; Durmaz Incel O Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296713 [TBL] [Abstract][Full Text] [Related]
9. HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Islam MS; Hasan KF; Sultana S; Uddin S; Lio' P; Quinn JMW; Moni MA Neural Netw; 2023 May; 162():271-287. PubMed ID: 36921434 [TBL] [Abstract][Full Text] [Related]
10. Automated detection and recognition system for chewable food items using advanced deep learning models. Kumar Y; Koul A; Kamini ; Woźniak M; Shafi J; Ijaz MF Sci Rep; 2024 Mar; 14(1):6589. PubMed ID: 38504098 [TBL] [Abstract][Full Text] [Related]
11. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data. Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149 [TBL] [Abstract][Full Text] [Related]
12. MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms. Nissar I; Alam S; Masood S; Kashif M Comput Methods Programs Biomed; 2024 May; 248():108121. PubMed ID: 38531147 [TBL] [Abstract][Full Text] [Related]
13. Achieving More with Less: A Lightweight Deep Learning Solution for Advanced Human Activity Recognition (HAR). AlMuhaideb S; AlAbdulkarim L; AlShahrani DM; AlDhubaib H; AlSadoun DE Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205129 [TBL] [Abstract][Full Text] [Related]
14. A novel measurement approach to dynamic change of limb length discrepancy using deep learning and wearable sensors. Wu J; Shi Y; Wu X Sci Prog; 2024; 107(1):368504241236345. PubMed ID: 38490169 [TBL] [Abstract][Full Text] [Related]
15. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning. Link J; Perst T; Stoeve M; Eskofier BM Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174 [TBL] [Abstract][Full Text] [Related]
16. Prevalence and risk factors analysis of postpartum depression at early stage using hybrid deep learning model. Lilhore UK; Dalal S; Varshney N; Sharma YK; Rao KBVB; Rao VVRM; Alroobaea R; Simaiya S; Margala M; Chakrabarti P Sci Rep; 2024 Feb; 14(1):4533. PubMed ID: 38402249 [TBL] [Abstract][Full Text] [Related]
17. COVID-19 Detection using Hybrid CNN-RNN Architecture with Transfer Learning from X-Rays. Deshwal D; Sangwan P; Dahiya N; Lilhore UK; Dalal S; Simaiya S Curr Med Imaging; 2023 Aug; ():. PubMed ID: 37594157 [TBL] [Abstract][Full Text] [Related]
18. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch. Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065 [TBL] [Abstract][Full Text] [Related]
19. An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition. Reddy YRM; Muralidhar P; Srinivas M Brain Topogr; 2024 Jan; 37(1):1-18. PubMed ID: 37995000 [TBL] [Abstract][Full Text] [Related]
20. Design of urban road fault detection system based on artificial neural network and deep learning. Lin Y Front Neurosci; 2024; 18():1369832. PubMed ID: 38741790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]