These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38855250)

  • 1. Hybrid mRMR and multi-objective particle swarm feature selection methods and application to metabolomics of traditional Chinese medicine.
    Zhang M; Du J; Nie B; Luo J; Liu M; Yuan Y
    PeerJ Comput Sci; 2024; 10():e2073. PubMed ID: 38855250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved binary particle swarm optimization algorithm for clinical cancer biomarker identification in microarray data.
    Yang G; Li W; Xie W; Wang L; Yu K
    Comput Methods Programs Biomed; 2024 Feb; 244():107987. PubMed ID: 38157825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage feature selection for classification of gene expression data based on an improved Salp Swarm Algorithm.
    Qin X; Zhang S; Yin D; Chen D; Dong X
    Math Biosci Eng; 2022 Sep; 19(12):13747-13781. PubMed ID: 36654066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-objective based radiomics feature selection method for response prediction following radiotherapy.
    Pan X; Liu C; Feng T; Qi XS
    Phys Med Biol; 2023 Feb; 68(5):. PubMed ID: 36758241
    [No Abstract]   [Full Text] [Related]  

  • 5. Supervised Relevance-Redundancy assessments for feature selection in omics-based classification scenarios.
    Cascianelli S; Galzerano A; Masseroli M
    J Biomed Inform; 2023 Aug; 144():104457. PubMed ID: 37488024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG feature selection method based on maximum information coefficient and quantum particle swarm.
    Chen W; Cai Y; Li A; Su Y; Jiang K
    Sci Rep; 2023 Sep; 13(1):14515. PubMed ID: 37666919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A filter feature selection method based on the Maximal Information Coefficient and Gram-Schmidt Orthogonalization for biomedical data mining.
    Lyu H; Wan M; Han J; Liu R; Wang C
    Comput Biol Med; 2017 Oct; 89():264-274. PubMed ID: 28850898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification.
    Atteia G; Alnashwan R; Hassan M
    Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature Selection Based on Adaptive Particle Swarm Optimization with Leadership Learning.
    Ye Z; Xu Y; He Q; Wang M; Bai W; Xiao H
    Comput Intell Neurosci; 2022; 2022():1825341. PubMed ID: 36072739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection.
    Segera D; Mbuthia M; Nyete A
    Biomed Res Int; 2020; 2020():8506365. PubMed ID: 32908920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid machine learning feature selection model-HMLFSM to enhance gene classification applied to multiple colon cancers dataset.
    Al-Rajab M; Lu J; Xu Q; Kentour M; Sawsa A; Shuweikeh E; Joy M; Arasaradnam R
    PLoS One; 2023; 18(11):e0286791. PubMed ID: 37917732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Objective Self-Adaptive Particle Swarm Optimization for Large-Scale Feature Selection in Classification.
    Zhang C; Xue Y; Neri F; Cai X; Slowik A
    Int J Neural Syst; 2024 Mar; 34(3):2450014. PubMed ID: 38352979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle swarm optimization for feature selection in classification: a multi-objective approach.
    Xue B; Zhang M; Browne WN
    IEEE Trans Cybern; 2013 Dec; 43(6):1656-71. PubMed ID: 24273143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel hybrid feature selection strategy in quantitative analysis of laser-induced breakdown spectroscopy.
    Yan C; Liang J; Zhao M; Zhang X; Zhang T; Li H
    Anal Chim Acta; 2019 Nov; 1080():35-42. PubMed ID: 31409473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new improved maximal relevance and minimal redundancy method based on feature subset.
    Xie S; Zhang Y; Lv D; Chen X; Lu J; Liu J
    J Supercomput; 2023; 79(3):3157-3180. PubMed ID: 36060093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new froth image classification method based on the MRMR-SSGMM hybrid model for recognition of reagent dosage condition in the coal flotation process.
    Cao W; Wang R; Fan M; Fu X; Wang H; Wang Y
    Appl Intell (Dordr); 2022; 52(1):732-752. PubMed ID: 34764598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying (Quasi) Equally Informative Subsets in Feature Selection Problems for Classification: A Max-Relevance Min-Redundancy Approach.
    Karakaya G; Galelli S; Ahipasaoglu SD; Taormina R
    IEEE Trans Cybern; 2016 Jun; 46(6):1424-37. PubMed ID: 26151949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection.
    Guo X; Hu J; Yu H; Wang M; Yang B
    Comput Biol Med; 2023 Nov; 166():107538. PubMed ID: 37857136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data.
    Song XF; Zhang Y; Gong DW; Gao XZ
    IEEE Trans Cybern; 2022 Sep; 52(9):9573-9586. PubMed ID: 33729976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.