These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38855360)

  • 1. Low-thermal-budget electrically active thick polysilicon for CMOS-First MEMS-last integration.
    Michael A; Chuang IY; Kwok CY; Omaki K
    Microsyst Nanoeng; 2024; 10():75. PubMed ID: 38855360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of tantalum as a structural material for MEMS thermal actuators.
    Ni L; Pocratsky RM; de Boer MP
    Microsyst Nanoeng; 2021; 7():6. PubMed ID: 34567724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-CMOS processing challenges and design developments of CMOS-MEMS microheaters for local CNT synthesis.
    Roy A; Ta BQ; Azadmehr M; Aasmundtveit KE
    Microsyst Nanoeng; 2023; 9():136. PubMed ID: 37937184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microelectromechanical Systems from Aligned Cellulose Nanocrystal Films.
    Saha P; Ansari N; Kitchens CL; Ashurst WR; Davis VA
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24116-24123. PubMed ID: 29938487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.
    Khir MH; Qu P; Qu H
    Sensors (Basel); 2011; 11(8):7892-907. PubMed ID: 22164052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption.
    Lara-Castro M; Herrera-Amaya A; Escarola-Rosas MA; Vázquez-Toledo M; López-Huerta F; Aguilera-Cortés LA; Herrera-May AL
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEMS based Low Cost Piezoresistive Microcantilever Force Sensor and Sensor Module.
    Pandya HJ; Kim HT; Roy R; Desai JP
    Mater Sci Semicond Process; 2014 Mar; 19():163-173. PubMed ID: 24855449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on a CMOS-MEMS Infrared Sensor with Reduced Graphene Oxide.
    Chen SJ; Chen B
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrothermal Actuators for SiO₂ Photonic MEMS.
    Peters TJ; Tichem M
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Study of Reactive Ion Etching of Heavily Doped Polysilicon Based on HBr/O
    Zhou N; Li J; Mao H; Liu H; Liu J; Gao J; Xiang J; Hu Y; Shi M; Ju J; Lei Y; Yang T; Li J; Wang W
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.
    Zhou H; Kropelnicki P; Lee C
    Nanoscale; 2015 Jan; 7(2):532-41. PubMed ID: 25413834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate.
    Zhang K; Yang Y; Pun EY; Shen R
    Nanotechnology; 2010 Jun; 21(23):235602. PubMed ID: 20463387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotwinned metal MEMS films with unprecedented strength and stability.
    Sim GD; Krogstad JA; Reddy KM; Xie KY; Valentino GM; Weihs TP; Hemker KJ
    Sci Adv; 2017 Jun; 3(6):e1700685. PubMed ID: 28782015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piezoresistive temperature sensors fabricated by a surface micromachining CMOS MEMS process.
    Cai C; Tan J; Hua D; Qin M; Zhu N
    Sci Rep; 2018 Nov; 8(1):17065. PubMed ID: 30459315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the microstructure and surface morphology of metal thin films for nano-electro-mechanical systems applications.
    Luber E; Mohammadi R; Ophus C; Lee Z; Nelson-Fitzpatrick N; Westra K; Evoy S; Dahmen U; Radmilovic V; Mitlin D
    Nanotechnology; 2008 Mar; 19(12):125705. PubMed ID: 21817746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoresistive sensitivity, linearity and resistance time drift of polysilicon nanofilms with different deposition temperatures.
    Shi C; Liu X; Chuai R
    Sensors (Basel); 2009; 9(2):1141-66. PubMed ID: 22399960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser crystallized low-loss polycrystalline silicon waveguides.
    Franz Y; Runge AFJ; Oo SZ; Jimenez-Martinez G; Healy N; Khokhar A; Tarazona A; Chong HMH; Mailis S; Peacock AC
    Opt Express; 2019 Feb; 27(4):4462-4470. PubMed ID: 30876064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.
    Kao PH; Shih PJ; Dai CL; Liu MC
    Sensors (Basel); 2010; 10(2):1315-25. PubMed ID: 22205869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.