These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38855664)

  • 1. Theoretical impact of chromatic aberration correction on visual acuity.
    Nankivil D; Cottaris NP; Brainard DH
    Biomed Opt Express; 2024 May; 15(5):3265-3284. PubMed ID: 38855664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision is protected against blue defocus.
    Benedi-Garcia C; Vinas M; Dorronsoro C; Burns SA; Peli E; Marcos S
    Sci Rep; 2021 Jan; 11(1):352. PubMed ID: 33432060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual performance after correcting the monochromatic and chromatic aberrations of the eye.
    Yoon GY; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):266-75. PubMed ID: 11822589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration.
    Charman WN; Chateau N
    Ophthalmic Physiol Opt; 2003 Nov; 23(6):479-93. PubMed ID: 14622350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo chromatic aberration in eyes implanted with intraocular lenses.
    Pérez-Merino P; Dorronsoro C; Llorente L; Durán S; Jiménez-Alfaro I; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2654-61. PubMed ID: 23493299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations.
    Ohnuma K; Kayanuma H; Lawu T; Negishi K; Yamaguchi T; Noda T
    Biomed Opt Express; 2011 Jun; 2(6):1443-57. PubMed ID: 21698008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes.
    Marcos S; Burns SA; Prieto PM; Navarro R; Baraibar B
    Vision Res; 2001 Dec; 41(28):3861-71. PubMed ID: 11738452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.
    Schwarz C; Cánovas C; Manzanera S; Weeber H; Prieto PM; Piers P; Artal P
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24520150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The visual benefits of correcting longitudinal and transverse chromatic aberration.
    Roorda A; Cholewiak SA; Bhargava S; Ivzan NH; LaRocca F; Nankivil D; Banks MS
    J Vis; 2023 Feb; 23(2):3. PubMed ID: 36729421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatic aberration and spectral dependency of extended-range-of-vision intraocular lens technology.
    Łabuz G; Yan W; Baur ID; Khoramnia R; Auffarth GU
    Sci Rep; 2023 Sep; 13(1):14781. PubMed ID: 37679352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations.
    Artal P; Manzanera S; Piers P; Weeber H
    Opt Express; 2010 Jan; 18(2):1637-48. PubMed ID: 20173991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Monochromatic and Chromatic Aberrations in Pseudophakic Patients.
    Marcos S; Romero M; Benedí-García C; González-Ramos A; Vinas M; Alejandre N; Jiménez-Alfaro I
    J Refract Surg; 2020 Apr; 36(4):230-238. PubMed ID: 32267953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achromatic doublet intraocular lens for full aberration correction.
    Fernandez EJ; Artal P
    Biomed Opt Express; 2017 May; 8(5):2396-2404. PubMed ID: 28663881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-angle chromatic aberration corrector for the human eye.
    Benny Y; Manzanera S; Prieto PM; Ribak EN; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1538-44. PubMed ID: 17491621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of retinal image quality for polychromatic light.
    Ravikumar S; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2395-407. PubMed ID: 18830317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.
    Fernández E; Drexler W
    Opt Express; 2005 Oct; 13(20):8184-97. PubMed ID: 19498848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.