These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38855912)

  • 1. Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects.
    García S; Boullosa-Falces D; Sanz DS; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2024; 40(5-6):366-376. PubMed ID: 38855912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers-condensers cooled by seawater.
    Trueba A; Otero FM; González JA; Vega LM; García S
    Biofouling; 2013; 29(9):1139-51. PubMed ID: 24067104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser.
    García S; Trueba A; Vega LM; Madariaga E
    Biofouling; 2016 Nov; 32(10):1185-1193. PubMed ID: 27744709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent.
    Eguía E; Trueba A; Girón A; Río-Calonge B; Otero F; Bielva C
    Biofouling; 2007; 23(3-4):231-47. PubMed ID: 17653933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems.
    Boullosa-Falces D; García S; Sanz D; Trueba A; Gomez-Solaetxe MA
    Biofouling; 2020 Jan; 36(1):73-85. PubMed ID: 31985280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.
    Trueba A; García S; Otero FM
    Biofouling; 2014 Jan; 30(1):95-103. PubMed ID: 24266611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(1):19-26. PubMed ID: 25567299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.
    Trueba A; García S; Otero FM; Vega LM; Madariaga E
    Biofouling; 2015; 31(6):527-34. PubMed ID: 26222187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined monitor for direct and indirect measurement of biofouling.
    Eguía E; Trueba A; Río-Calonge B; Girón A; Amieva JJ; Bielva C
    Biofouling; 2008; 24(2):75-86. PubMed ID: 18167032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the treatment of problematic industrial biofilms.
    Xu D; Jia R; Li Y; Gu T
    World J Microbiol Biotechnol; 2017 May; 33(5):97. PubMed ID: 28409363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly non-biocide-release coatings for marine biofouling prevention.
    Silva ER; Ferreira O; Ramalho PA; Azevedo NF; Bayón R; Igartua A; Bordado JC; Calhorda MJ
    Sci Total Environ; 2019 Feb; 650(Pt 2):2499-2511. PubMed ID: 30293004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polygodial: a contact active antifouling biocide.
    Cahill PL; Kuhajek JM
    Biofouling; 2014 Oct; 30(9):1035-43. PubMed ID: 25329703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient Level Determines Biofilm Characteristics and Subsequent Impact on Microbial Corrosion and Biocide Effectiveness.
    Salgar-Chaparro SJ; Lepkova K; Pojtanabuntoeng T; Darwin A; Machuca LL
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31980429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature-Inspired Peptide Antifouling Biocide: Coating Compatibility, Field Validation, and Environmental Stability.
    Cahill P; Grant TM; Rennison D; Champeau O; Boundy M; Passfield E; Berglin M; Brimble MA; Svenson J
    ACS Appl Bio Mater; 2023 Jun; 6(6):2415-2425. PubMed ID: 37272968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting tubular heat exchanger efficiency reduction caused by marine biofilm adhesion using CFD simulations.
    Boullosa-Falces D; Sanz DS; Garcia S; Trueba-Castañeda L; Trueba A
    Biofouling; 2022 Aug; 38(7):663-673. PubMed ID: 35950539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.
    Casanueva JF; Sánchez J; García-Morales JL; Casanueva-Robles T; López JA; Portela JR; Nebot E; Sales D
    Water Sci Technol; 2003; 47(5):99-104. PubMed ID: 12701913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens.
    Simões LC; Lemos M; Araújo P; Pereira AM; Simões M
    Biofouling; 2011 Mar; 27(3):337-46. PubMed ID: 21512918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofouling and me: My Stockholm syndrome with biofilms.
    Flemming HC
    Water Res; 2020 Apr; 173():115576. PubMed ID: 32044598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields.
    Trueba A; Vega LM; García S; Otero FM; Madariaga E
    Water Sci Technol; 2016; 73(5):1221-9. PubMed ID: 26942546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifouling coatings influence both abundance and community structure of colonizing biofilms: a case study in the Northwestern Mediterranean Sea.
    Camps M; Barani A; Gregori G; Bouchez A; Le Berre B; Bressy C; Blache Y; Briand JF
    Appl Environ Microbiol; 2014 Aug; 80(16):4821-31. PubMed ID: 24907329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.