These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38856056)
1. Dimeric vs bidimeric cells for molecular quantum cellular automata composed of oxidized norbornadiene and its polycyclic derivatives. Palii A; Belonovich V; Aldoshin S; Tsukerblat B J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856056 [TBL] [Abstract][Full Text] [Related]
2. Mixed-Valence Bridged Norbornylogous Compounds as Switchable Cells for Molecular Quantum Cellular Automata: A Compromise between High Polarizability and Low Power Dissipation. Palii A; Belonovich V; Aldoshin S; Zilberg S; Tsukerblat B J Phys Chem A; 2023 Nov; 127(43):9030-9039. PubMed ID: 37871334 [TBL] [Abstract][Full Text] [Related]
3. In the quest for an optimal parametric regime of nonadiabatic switching ensuring low heat release in conjunction with high polarizability of mixed-valence molecular dimers. Palii A; Belonovich V; Tsukerblat B Phys Chem Chem Phys; 2023 Jul; 25(26):17526-17534. PubMed ID: 37358567 [TBL] [Abstract][Full Text] [Related]
4. Vibronic recovering of functionality of quantum cellular automata based on bi-dimeric square cells with violated condition of strong Coulomb repulsion. Tsukerblat B; Palii A; Zilberg S; Korchagin D; Aldoshin S; Clemente-Juan JM J Chem Phys; 2022 Aug; 157(7):074308. PubMed ID: 35987591 [TBL] [Abstract][Full Text] [Related]
5. A parametric two-mode vibronic model of a dimeric mixed-valence cell for molecular quantum cellular automata and computational Palii A; Aldoshin S; Zilberg S; Tsukerblat B Phys Chem Chem Phys; 2020 Nov; 22(44):25982-25999. PubMed ID: 33169122 [TBL] [Abstract][Full Text] [Related]
6. Insight Into The Spin-Vibronic Problem of a Mixed Valence Magnetic Molecular Cell for Quantum Cellular Automata. Palii A; Korchagin D; Aldoshin S; Clemente-Juan JM; Zilberg S; Tsukerblat B Chemphyschem; 2021 Sep; 22(17):1754-1768. PubMed ID: 34085351 [TBL] [Abstract][Full Text] [Related]
7. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response. Tsukerblat B; Palii A; Clemente-Juan JM; Coronado E J Chem Phys; 2015 Oct; 143(13):134307. PubMed ID: 26450314 [TBL] [Abstract][Full Text] [Related]
8. Theoretical insight into clocking in a molecular mixed-valence cell of quantum cellular automata through the vibronic approach. Palii A; Aldoshin S; Tsukerblat B J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38174797 [TBL] [Abstract][Full Text] [Related]
9. Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit. Alharbi M; Edwards G; Stocker R Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686953 [TBL] [Abstract][Full Text] [Related]
11. Ab initio studies of counterion effects in molecular quantum-dot cellular automata. Liza N; Coe DJ; Lu Y; Blair EP J Comput Chem; 2024 Mar; 45(7):392-404. PubMed ID: 38014502 [TBL] [Abstract][Full Text] [Related]
12. Towards the design of molecular cells for quantum cellular automata: critical reconsideration of the parameter regime for achieving functionality. Palii A; Aldoshin S; Tsukerblat B Dalton Trans; 2021 Dec; 51(1):286-302. PubMed ID: 34897328 [TBL] [Abstract][Full Text] [Related]
13. Controllable Electron Transfer in Mixed-Valence Bridged Norbornylogous Compounds: Zilberg S; Stekolshik Y; Palii A; Tsukerblat B J Phys Chem A; 2022 May; 126(19):2855-2878. PubMed ID: 35537213 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical versus quantum-mechanical vibronic approach in the analysis of the functional characteristics of molecular quantum cellular automata. Palii A; Rybakov A; Aldoshin S; Tsukerblat B Phys Chem Chem Phys; 2019 Aug; 21(30):16751-16761. PubMed ID: 31322638 [TBL] [Abstract][Full Text] [Related]
15. Toward multifunctional molecular cells for quantum cellular automata: exploitation of interconnected charge and spin degrees of freedom. Palii A; Clemente-Juan JM; Rybakov A; Aldoshin S; Tsukerblat B Phys Chem Chem Phys; 2021 Jul; 23(26):14511-14528. PubMed ID: 34190247 [TBL] [Abstract][Full Text] [Related]
16. A metric for characterizing the bistability of molecular quantum-dot cellular automata. Lu Y; Lent CS Nanotechnology; 2008 Apr; 19(15):155703. PubMed ID: 21825627 [TBL] [Abstract][Full Text] [Related]
17. Non-Restoring Array Divider Using Optimized CAS Cells Based on Quantum-Dot Cellular Automata with Minimized Latency and Power Dissipation for Quantum Computing. Kim HI; Jeon JC Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159885 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric, mixed-valence molecules for spectroscopic readout of quantum-dot cellular automata. Liza N; Murphey D; Cong P; Beggs DW; Lu Y; Blair EP Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34875643 [TBL] [Abstract][Full Text] [Related]
19. Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. Qi H; Sharma S; Li Z; Snider GL; Orlov AO; Lent CS; Fehlner TP J Am Chem Soc; 2003 Dec; 125(49):15250-9. PubMed ID: 14653760 [TBL] [Abstract][Full Text] [Related]
20. A new approach of presenting reversible logic gate in nanoscale. Bahar AN; Waheed S; Hossain N Springerplus; 2015; 4():153. PubMed ID: 25932365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]