BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38856090)

  • 1. Utilization of
    Müller DS; Charki P; Cordier M; Gellrich U
    J Org Chem; 2024 Jun; 89(12):8668-8675. PubMed ID: 38856090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclohexanecarbonitriles: assigning configurations at quaternary centers from (13)C NMR CN chemical shifts.
    Fleming FF; Wei G
    J Org Chem; 2009 May; 74(9):3551-3. PubMed ID: 19348434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete analysis of the 1H and 13C NMR spectra of diastereomeric mixtures of (R,S- and S,S-)-3,6-dimethoxy-2,5-dihydropyrazine-substituted indoles and their conformational preference in solution.
    Akhmedov NG; Dacko CA; Güven A; Söderberg BC
    Magn Reson Chem; 2010 Feb; 48(2):134-50. PubMed ID: 19998390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR spectroscopic elucidation of the structure and stereochemistry of tricyclic 3-styrylpyrazolines.
    Tóth G; Simon A; Jenei A; Jeko J; Lévai A
    Magn Reson Chem; 2008 Nov; 46(11):1025-9. PubMed ID: 18803345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases.
    Wu Y; Zakharova VM; Kashemirov BA; Goodman MF; Batra VK; Wilson SH; McKenna CE
    J Am Chem Soc; 2012 May; 134(21):8734-7. PubMed ID: 22397499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The identification of vicinally substituted cyclohexane isomers in their mixtures by 1H and 13C NMR spectroscopy.
    Laihia K; Kolehmainen E; Nevalainen T; Kauppinen R; Vasilieva TT; Terentiev AB
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Feb; 56(3):541-6. PubMed ID: 10794468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and determination of the stereochemistry of the 1,3,5-trimethyl-substituted alkyl chain in verucopeptin, a microbial metabolite.
    Yoshimura A; Kishimoto S; Nishimura S; Otsuka S; Sakai Y; Hattori A; Kakeya H
    J Org Chem; 2014 Aug; 79(15):6858-67. PubMed ID: 25014229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (3, 2)D
    Brodaczewska N; Košťálová Z; Uhrín D
    J Biomol NMR; 2018 Feb; 70(2):115-122. PubMed ID: 29327222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A density functional study of the 13C NMR chemical shifts in functionalized single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Autschbach J
    J Am Chem Soc; 2007 Apr; 129(14):4430-9. PubMed ID: 17371025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [1H, 13C NMR and stereochemistry studies of 3S-substituted alkoxylquinuclidine by two-dimensional and NOE difference NMR techniques].
    Miao ZC; Gao JH; Feng R; Zhang QK
    Yao Xue Xue Bao; 1989; 24(3):194-9. PubMed ID: 2816375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, biological evaluation, and conformational analysis of A-ring diastereomers of 2-methyl-1,25-dihydroxyvitamin D(3) and their 20-epimers: unique activity profiles depending on the stereochemistry of the A-ring and at C-20.
    Konno K; Fujishima T; Maki S; Liu Z; Miura D; Chokki M; Ishizuka S; Yamaguchi K; Kan Y; Kurihara M; Miyata N; Smith C; DeLuca HF; Takayama H
    J Med Chem; 2000 Nov; 43(22):4247-65. PubMed ID: 11063621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative, equal carbon response HSQC experiment, QEC-HSQC.
    Mäkelä V; Helminen J; Kilpeläinen I; Heikkinen S
    J Magn Reson; 2016 Oct; 271():34-9. PubMed ID: 27543809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-shaped diastereomers containing cofacial thiophene-substituted quinoxaline rings: synthesis, photophysical properties, and X-ray crystallography.
    DeBlase CR; Finke RT; Porras JA; Tanski JM; Nadeau JM
    J Org Chem; 2014 May; 79(10):4312-21. PubMed ID: 24773090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of seven-membered lactones by computational NMR methods: proton NMR chemical shift data are more discriminating than carbon.
    Marell DJ; Emond SJ; Kulshrestha A; Hoye TR
    J Org Chem; 2014 Jan; 79(2):752-8. PubMed ID: 24354614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of MM/QM calculations of
    Abraham RJ; Cooper MA
    Magn Reson Chem; 2020 Jun; 58(6):520-531. PubMed ID: 31498466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13C NMR analysis of 3,6-dihydro-2H-pyrans: assignment of remote stereochemistry using axial shielding effects.
    Bartlett MJ; Northcote PT; Lein M; Harvey JE
    J Org Chem; 2014 Jun; 79(12):5521-32. PubMed ID: 24874030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational preferences in diastereomeric(5S)-methyl-3-(o-aryl)-2,4-oxazolidinediones.
    Demir O; Doğan I
    Chirality; 2003 Mar; 15(3):242-50. PubMed ID: 12582991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A permutation approach to the assignment of the configuration to diastereomeric tetrads by comparison of experimental and ab initio calculated differences in NMR data.
    Boratyński PJ
    Beilstein J Org Chem; 2017; 13():2478-2485. PubMed ID: 29234475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cage chirality of P-C cage compounds: highly diastereoselective formation of diastereomeric P5-deltacyclenes, separation of diastereomers, and removal of the chiral auxiliary.
    Hofmann M; Höhn C; Heinemann FW; Zenneck U
    Chemistry; 2009 Jun; 15(24):5998-6007. PubMed ID: 19405057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of MS3 spectra for the multicomponent quantification of diastereomeric N-acetylhexosamines.
    Desaire H; Leary JA
    J Am Soc Mass Spectrom; 2000 Dec; 11(12):1086-94. PubMed ID: 11118116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.