These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38856395)

  • 1. Simple DFS and AOA simultaneous measurement scheme without directional ambiguity with co-frequency self-interference signal cancellation.
    Fang Y; Ma J
    Appl Opt; 2024 Apr; 63(11):2963-2972. PubMed ID: 38856395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonics-Based Simultaneous DFS and AOA Measurement System without Direction Ambiguity.
    Meng Q; Zhu Z; Wang G; Li H; Xie L; Zhao S
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurements of Ka-band microwave angle of arrival and Doppler frequency shift based on a silicon DPMZM.
    Zhang Q; Chen S; Li Y; Yu H
    Opt Express; 2023 Apr; 31(9):14509-14520. PubMed ID: 37157314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous and unambiguous identification of DFS and AOA without dependence on echo signal power.
    Li G; Meng X; Wang L; Li M; Zhu N; Li W
    Opt Lett; 2023 Feb; 48(4):1028-1031. PubMed ID: 36791002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonic approach for Doppler-frequency-shift and angle-of-arrival measurement with direction unambiguity and high precision.
    Lin Q; Ma J
    Appl Opt; 2023 Feb; 62(6):1447-1455. PubMed ID: 36821303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic approach for simultaneous measurements of Doppler-frequency-shift and angle-of-arrival of microwave signals.
    Li P; Yan L; Ye J; Feng X; Pan W; Luo B; Zou X; Zhou T; Chen Z
    Opt Express; 2019 Mar; 27(6):8709-8716. PubMed ID: 31052683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-channel system for joint unambiguous measurement of DFS and AOA based on serrodyne modulation.
    Li Y; Guo Y; Yin B; Wang Z; He Q; Wang M
    Appl Opt; 2023 Sep; 62(26):6924-6930. PubMed ID: 37707031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic architecture for remote multi-parameter measurement and transmission of microwave signals.
    Wang Y; Yang S; Yang B; Chi H
    Opt Express; 2024 May; 32(10):18033-18043. PubMed ID: 38858969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic approach for simultaneous measurement of microwave DFS and AOA.
    Zhao J; Tang Z; Pan S
    Appl Opt; 2021 Jun; 60(16):4622-4626. PubMed ID: 34143017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems.
    Chen Y; Pan S
    Opt Lett; 2018 Jul; 43(13):3124-3127. PubMed ID: 29957795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic-Assisted Scheme for Simultaneous Self-Interference Cancellation, Fiber Dispersion Immunity, and High-Efficiency Harmonic Down-Conversion.
    Li H; Zhu Z; Gao C; Wang G; Zhou T; Li X; Meng Q; Zhou Y; Zhao S
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave photonic RF front-end for co-frequency co-time full duplex 5G communication with integrated RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion.
    Huang L; Zhang Y; Li X; Deng L; Cheng M; Fu S; Tang M; Liu D
    Opt Express; 2019 Oct; 27(22):32147-32157. PubMed ID: 31684432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple photonics-based system for Doppler frequency shift and angle of arrival measurement.
    Huang C; Chen H; Chan EHW
    Opt Express; 2020 Apr; 28(9):14028-14037. PubMed ID: 32403866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel microwave photonic based direction finding system.
    Huang C; Chan EHW
    Opt Express; 2020 Aug; 28(17):25346-25357. PubMed ID: 32907057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic Doppler frequency shift measurement based on a dual-polarization modulator.
    Li X; Wen A; Chen W; Gao Y; Xiang S; Zhang H; Ma X
    Appl Opt; 2017 Mar; 56(8):2084-2089. PubMed ID: 28375292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-polarization MZM-based photonic nonlinear analog self-interference cancellation for in-band full-duplex radios.
    Lee J; Park J; Ha I; Han SK
    Opt Express; 2024 May; 32(10):16983-16998. PubMed ID: 38858892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Microwave Photonic 2 × 2 IBFD-MIMO Communication System with Narrowband Self-Interference Cancellation.
    Ma Y; Shi F; Fan Y
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic-assisted wideband frequency downconverter with self-interference cancellation and image rejection.
    Weng B; Chen Y; Chen Y
    Appl Opt; 2019 May; 58(13):3539-3547. PubMed ID: 31044851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic-based analog and digital RF self-interference cancellation with high spectral efficiency.
    Shi T; Han M; Chen Y
    Appl Opt; 2021 Nov; 60(33):10299-10304. PubMed ID: 34807037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digitally assisted photonic analog domain self-interference cancellation for in-band full-duplex MIMO systems via the LS algorithm with adaptive order.
    Han M; Chen Y
    Opt Lett; 2022 Sep; 47(18):4774-4777. PubMed ID: 36107087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.