BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38856461)

  • 1. Spot position scheme on a quadrant detector for a spaceborne laser communication system.
    Wei J; Zhu H; Wang Y; Sun N; Liu F; Zhang J; Chen Y; Liu J
    Appl Opt; 2024 Apr; 63(12):3162-3167. PubMed ID: 38856461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Improved Method for Spot Position Detection of a Laser Tracking and Positioning System Based on a Four-Quadrant Detector.
    Zhang W; Guo W; Zhang C; Zhao S
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Log-Ratio Spot Position Detection Algorithm with a Quadrant Detector under Different SNR Environments.
    Huo L; Wu Z; Wu J; Gao S; Chen Y; Song Y; Wang S
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method for Improving the Detection Accuracy of the Spot Position of the Four-Quadrant Detector in a Free Space Optical Communication System.
    Wang X; Su X; Liu G; Han J; Wang K; Zhu W
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRC-Based High-Precision Spot Position Detection in Inter-Satellite Laser Communication.
    Li Q; Guo H; Xu S; Xu Y; Wang Q; He D; Peng Z; Huang Y
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33023183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area.
    Zhang J; Qian W; Gu G; Ren K; Chen Q; Mao C; Cai G; Liu Z; Xu L
    Appl Opt; 2018 Aug; 57(24):6898-6905. PubMed ID: 30129575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Spot Center Location Method for Chinese Spaceborne GF-7 Footprint Camera.
    Ren C; Xie J; Zhi X; Yang Y; Yang S
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved calibration method of a four-quadrant detector based on Bayesian theory in a laser auto-collimation measurement system.
    Diao K; Liu X; Yao Z; Lu W; Yang W
    Appl Opt; 2022 Jul; 61(19):5545-5551. PubMed ID: 36255780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and Adjustment of Positioning Error of PSD System for Mobile SOF-FTIR.
    Qu L; Liu J; Deng Y; Xu L; Hu K; Yang W; Jin L; Cheng X
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Scheme for Enhancing Precision in 3-Dimensional Positioning for Non-Contact Measurement Systems Based on Laser Triangulation.
    Selami Y; Tao W; Gao Q; Yang H; Zhao H
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29414917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate beacon positioning method for satellite-to-ground optical communication.
    Wang Q; Tong L; Yu S; Tan L; Ma J
    Opt Express; 2017 Dec; 25(25):30996-31005. PubMed ID: 29245778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved measurement accuracy of spot position on an InGaAs quadrant detector.
    Wu J; Chen Y; Gao S; Li Y; Wu Z
    Appl Opt; 2015 Sep; 54(27):8049-54. PubMed ID: 26406504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D error calibration of spatial spots based on dual position-sensitive detectors.
    Cheng S; Liu J; Li Z; Zhang P; Chen J; Yang H
    Appl Opt; 2023 Feb; 62(4):933-943. PubMed ID: 36821147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of laser spot tracking for underwater optical wireless communication.
    Chen D; Li Z; Wang J; Lu H; Hao R; Fan K; Jin J; Wang Q; Wu S
    Opt Express; 2024 Feb; 32(4):6409-6422. PubMed ID: 38439344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved algorithm for expanding the measurement linear range of a four-quadrant detector.
    Zhang J; Qian W; Gu G; Mao C; Ren K; Wu C; Peng X; Chen Q
    Appl Opt; 2019 Oct; 58(28):7741-7748. PubMed ID: 31674456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication.
    Li Q; Xu S; Yu J; Yan L; Huang Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indoor high-precision visible light positioning system using Jaya algorithm.
    Cai C; Fu M; Meng X; Jia C; Pei M
    Math Biosci Eng; 2023 Apr; 20(6):10358-10375. PubMed ID: 37322936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spot alignment based on a five-photodiode receiver for a UWOC system.
    Xie S; Mi H; Feng R
    Appl Opt; 2022 Aug; 61(22):G1-G8. PubMed ID: 36255857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.
    Dong X; Niu T; Jia X; Zhu L
    Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A SINS/DVL Integrated Positioning System through Filtering Gain Compensation Adaptive Filtering.
    Yan X; Yang Y; Luo Q; Chen Y; Hu C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.