These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38856488)

  • 1. Manufacture reliability assessment of Si photonic foundry fabricated slow-light photonic crystal waveguides.
    Begović A; Maksumić A; Chen A; Fahrenkopf NM; Baiocco C; Huang ZR
    Appl Opt; 2024 Apr; 63(12):3359-3365. PubMed ID: 38856488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of photonic crystal slow light waveguides and cavities.
    Reardon CP; Rey IH; Welna K; O'Faolain L; Krauss TF
    J Vis Exp; 2012 Nov; (69):e50216. PubMed ID: 23222804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow light engineering in resonant photonic crystal line-defect waveguides.
    Moghaddam MK; Fleury R
    Opt Express; 2019 Sep; 27(18):26229-26238. PubMed ID: 31510481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic design of flat band slow light in photonic crystal waveguides.
    Li J; White TP; O'Faolain L; Gomez-Iglesias A; Krauss TF
    Opt Express; 2008 Apr; 16(9):6227-32. PubMed ID: 18545325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches.
    Tokushima M; Olmos JJ; Kitayama K
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1626-34. PubMed ID: 20355549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration on structure-parameter dependence of photonic crystal optical spectrum.
    Wang C; Kan Q; Xu X; Du W; Chen H
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1045-7. PubMed ID: 19441451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process.
    Shinkawa M; Ishikura N; Hama Y; Suzuki K; Baba T
    Opt Express; 2011 Oct; 19(22):22208-18. PubMed ID: 22109063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides.
    Liu B; Wang T; Tang J; Li X; Dong C; He Y
    Appl Opt; 2013 Dec; 52(34):8394-401. PubMed ID: 24513844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of extrinsic loss on group velocity in photonic crystal waveguides.
    O'Faolain L; White TP; O'Brien D; Yuan X; Settle MD; Krauss TF
    Opt Express; 2007 Oct; 15(20):13129-38. PubMed ID: 19550581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distributed backscattering in production O-band Si nanophotonic waveguides.
    Peng B; Rosenberg J; Sacher WD; Jensen AS; Khater M; Green WMJ; Barwicz T
    Opt Express; 2017 Sep; 25(19):23477-23485. PubMed ID: 29041647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant photonic States in coupled heterostructure photonic crystal waveguides.
    Cox J; Sabarinathan J; Singh M
    Nanoscale Res Lett; 2010 Feb; 5(4):741-6. PubMed ID: 20672066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow-light Mach-Zehnder modulators based on Si photonic crystals.
    Baba T; Nguyen HC; Yazawa N; Terada Y; Hashimoto S; Watanabe T
    Sci Technol Adv Mater; 2014 Apr; 15(2):024602. PubMed ID: 27877658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient light couplers to topological slow light waveguides in valley photonic crystals.
    Yoshimi H; Yamaguchi T; Ishida S; Ota Y; Iwamoto S
    Opt Express; 2024 Feb; 32(4):6382-6390. PubMed ID: 38439342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow-light-enhanced gain in active photonic crystal waveguides.
    Ek S; Lunnemann P; Chen Y; Semenova E; Yvind K; Mork J
    Nat Commun; 2014 Sep; 5():5039. PubMed ID: 25266779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle swarm optimization of silicon photonic crystal waveguide transition.
    Shiratori R; Nakata M; Hayashi K; Baba T
    Opt Lett; 2021 Apr; 46(8):1904-1907. PubMed ID: 33857100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of slow light in glide-symmetric photonic-crystal waveguides.
    Murendranath Patil C; Arregui G; Mechlenborg M; Zhou X; Alaeian H; David García P; Stobbe S
    Opt Express; 2022 Apr; 30(8):12565-12575. PubMed ID: 35472890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections.
    Faggiani R; Baron A; Zang X; Lalouat L; Schulz SA; O'Regan B; Vynck K; Cluzel B; de Fornel F; Krauss TF; Lalanne P
    Sci Rep; 2016 Jun; 6():27037. PubMed ID: 27246902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow light with large group index-bandwidth product in ellipse-hole photonic crystal waveguides.
    Han X; Wang T; Tang J; Liu B; Wang B; He Y; Zhu Y
    Appl Opt; 2015 Feb; 54(6):1543-7. PubMed ID: 25968223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits.
    Shen B; Lin H; Merget F; Azadeh SS; Li C; Lo GQ; Richardson KA; Hu J; Witzens J
    Opt Express; 2019 May; 27(10):13781-13792. PubMed ID: 31163837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.