These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38856504)

  • 41. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR.
    Ying Z; Xuan C; Zhai Y; Sun B; Li J; Deng W; Mai C; Wang F; Labati RD; Piuri V; Scotti F
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.
    Aggarwal HK; Pramanik A; Jacob M
    Proc IEEE Int Conf Acoust Speech Signal Process; 2021 Jun; 2021():. PubMed ID: 34335103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CS-based multi-task learning network for arrhythmia reconstruction and classification using ECG signals.
    Tang S; Deng Z
    Physiol Meas; 2023 Jul; 44(7):. PubMed ID: 37336244
    [No Abstract]   [Full Text] [Related]  

  • 45. Coded aperture optimization in compressive X-ray tomography: a gradient descent approach.
    Cuadros AP; Arce GR
    Opt Express; 2017 Oct; 25(20):23833-23849. PubMed ID: 29041333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rethinking the neighborhood information for deep learning-based optical coherence tomography angiography.
    Jiang Z; Huang Z; You Y; Geng M; Meng X; Qiu B; Zhu L; Gao M; Wang J; Zhou C; Ren Q; Lu Y
    Med Phys; 2022 Jun; 49(6):3705-3716. PubMed ID: 35306668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High fidelity deep learning-based MRI reconstruction with instance-wise discriminative feature matching loss.
    Wang K; Tamir JI; De Goyeneche A; Wollner U; Brada R; Yu SX; Lustig M
    Magn Reson Med; 2022 Jul; 88(1):476-491. PubMed ID: 35373388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AMP-Net: Denoising-Based Deep Unfolding for Compressive Image Sensing.
    Zhang Z; Liu Y; Liu J; Wen F; Zhu C
    IEEE Trans Image Process; 2021; 30():1487-1500. PubMed ID: 33338019
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38479004
    [No Abstract]   [Full Text] [Related]  

  • 50. High-performance reconstruction method combining total variation with a video denoiser for compressed ultrafast imaging.
    Pei C; Li DD; Shen Q; Zhang S; Qi D; Jin C; Dong L
    Appl Opt; 2024 Mar; 63(8):C32-C40. PubMed ID: 38568625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM.
    Hua J; Rao J; Peng Y; Liu J; Tang J
    Entropy (Basel); 2022 Jul; 24(8):. PubMed ID: 35893004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Source and coded aperture joint optimization for compressive X-ray tomosynthesis.
    Ma X; Zhao Q; Cuadros A; Mao T; Arce GR
    Opt Express; 2019 Mar; 27(5):6640-6659. PubMed ID: 30876245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial frequency domain imaging technology based on Fourier single-pixel imaging.
    Ren HM; Deng G; Zhou P; Kang X; Zhang Y; Ni J; Zhang Y; Wang Y
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35075831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plug-and-Play Algorithms for Video Snapshot Compressive Imaging.
    Yuan X; Liu Y; Suo J; Durand F; Dai Q
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7093-7111. PubMed ID: 34310288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Joint segmentation and reconstruction of hyperspectral data with compressed measurements.
    Zhang Q; Plemmons R; Kittle D; Brady D; Prasad S
    Appl Opt; 2011 Aug; 50(22):4417-35. PubMed ID: 21833118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SDARE: A stacked denoising autoencoder method for game dynamics network structure reconstruction.
    Huang K; Li S; Dai P; Wang Z; Yu Z
    Neural Netw; 2020 Jun; 126():143-152. PubMed ID: 32217355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Green Compressive Sampling Reconstruction in IoT Networks.
    Colonnese S; Biagi M; Cattai T; Cusani R; De Vico Fallani F; Scarano G
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unified Supervised-Unsupervised (SUPER) Learning for X-Ray CT Image Reconstruction.
    Ye S; Li Z; McCann MT; Long Y; Ravishankar S
    IEEE Trans Med Imaging; 2021 Nov; 40(11):2986-3001. PubMed ID: 34232871
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep Unsupervised Learning of 3D Point Clouds via Graph Topology Inference and Filtering.
    Chen S; Duan C; Yang Y; Li D; Feng C; Tian D
    IEEE Trans Image Process; 2019 Dec; ():. PubMed ID: 31831423
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.