These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38856586)

  • 1. "Hidden phase" in two-wavelength adaptive optics.
    Hyde MW; McCrae JE; Kalensky M; Spencer MF
    Appl Opt; 2024 Jun; 63(16):E1-E9. PubMed ID: 38856586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):53-62. PubMed ID: 10641838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensated-beacon adaptive optics using least-squares phase reconstruction.
    Banet MT; Spencer MF
    Opt Express; 2020 Nov; 28(24):36902-36914. PubMed ID: 33379774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correctability limitations imposed by plane-wave scintillation in multiconjugate adaptive optics.
    Lee LH; Baker GJ; Benson RS
    J Opt Soc Am A Opt Image Sci Vis; 2006 Oct; 23(10):2602-12. PubMed ID: 16985544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-turbulence phase compensation using tiled arrays.
    Spencer MF; Brennan TJ
    Opt Express; 2022 Sep; 30(19):33739-33755. PubMed ID: 36242402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different beacon wavelengths on atmospheric compensation in strong scintillation.
    Fan C; Wang Y; Gong Z
    Appl Opt; 2004 Aug; 43(22):4334-8. PubMed ID: 15298405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized Fried parameter after adaptive optics partial wave-front compensation.
    Cagigal MP; Canales VF
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):903-10. PubMed ID: 10795639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave-front sensing and deformable-mirror control in strong scintillation.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):911-9. PubMed ID: 10795640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of multiwavelength observations of optical scintillation.
    Dabberdt WF; Johnson WB
    Appl Opt; 1973 Jul; 12(7):1544-8. PubMed ID: 20125560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of strong scintillation with application to remote sensing of turbulence inner scale.
    Hill RJ; Frehlich RG
    Appl Opt; 1996 Feb; 35(6):986-97. PubMed ID: 21069096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere.
    Yan HX; Li SS; Zhang DL; Chen S
    Appl Opt; 2000 Jun; 39(18):3023-31. PubMed ID: 18345228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially filtered wave-front sensor for high-order adaptive optics.
    Poyneer LA; Macintosh B
    J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):810-9. PubMed ID: 15139434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.
    Chen M; Liu C; Rui D; Xian H
    Opt Express; 2018 Feb; 26(4):4230-4242. PubMed ID: 29475275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bringing the visible universe into focus with Robo-AO.
    Baranec C; Riddle R; Law NM; Ramaprakash AN; Tendulkar SP; Bui K; Burse MP; Chordia P; Das HK; Davis JT; Dekany RG; Kasliwal MM; Kulkarni SR; Morton TD; Ofek EO; Punnadi S
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction.
    Li M; Cvijetic M
    Appl Opt; 2015 Feb; 54(6):1453-62. PubMed ID: 25968213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical properties of the Strehl ratio as a function of pupil diameter and level of adaptive optics correction following atmospheric propagation.
    Shellan JB
    J Opt Soc Am A Opt Image Sci Vis; 2004 Aug; 21(8):1445-51. PubMed ID: 15330472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on Residual Aberrations Correction with Adaptive Optics Technique in Patients Undergoing Orthokeratology].
    Gong R; Yang B; Liu L; Dai Y; Zhang Y; Zhao H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):533-7. PubMed ID: 29709155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric-compensation experiments in strong-scintillation conditions.
    Primmerman CA; Price TR; Humphreys RA; Zollars BG; Barclay HT; Herrmann J
    Appl Opt; 1995 Apr; 34(12):2081-8. PubMed ID: 21037754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian beam weak scintillation: low-order turbulence effects and applicability of the Rytov method.
    Baker GJ
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):395-417. PubMed ID: 16477844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.