These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 38856587)

  • 1. Modeling the atmospheric refractive index structure parameter using macrometeorological observations.
    Hegde R; Anand N; Satheesh SK; Krishna Moorthy K
    Appl Opt; 2024 Jun; 63(16):E10-E17. PubMed ID: 38856587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements.
    Bendersky S; Kopeika NS; Blaunstein N
    Appl Opt; 2004 Jul; 43(20):4070-9. PubMed ID: 15285098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical timing jitter due to atmospheric turbulence: comparison of frequency comb measurements to predictions from micrometeorological sensors.
    Caldwell ED; Swann WC; Ellis JL; Bodine MI; Mak C; Kuczun N; Newbury NR; Sinclair LC; Muschinski A; Rieker GB
    Opt Express; 2020 Aug; 28(18):26661-26675. PubMed ID: 32906936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the refractive index structure parameter from single-level daytime routine weather data.
    van de Boer A; Moene AF; Graf A; Simmer C; Holtslag AA
    Appl Opt; 2014 Sep; 53(26):5944-60. PubMed ID: 25321675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the turbulence profile in the lower atmospheric boundary layer.
    van Iersel M; Paulson DA; Wu C; Ferlic NA; Rzasa JR; Davis CC; Walker M; Bowden M; Spychalsky J; Titus F
    Appl Opt; 2019 Sep; 58(25):6934-6941. PubMed ID: 31503665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric propagation of space-fractional Gaussian-beam waves in a FSO communication system.
    Khan AN; Younis U; Mehmood MQ; Zubair M
    Opt Express; 2022 Jan; 30(2):1570-1583. PubMed ID: 35209314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of wind-driven telescope vibrations on measurements of turbulent angle-of-arrival fluctuations.
    Tichkule S; Muschinski A
    Appl Opt; 2014 Jul; 53(21):4651-60. PubMed ID: 25090200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer.
    Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N
    Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.
    Vorontsov MA; Lachinova SL; Majumdar AK
    Appl Opt; 2016 Jul; 55(19):5172-9. PubMed ID: 27409206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entanglement of near-surface optical turbulence to atmospheric boundary layer dynamics and particulate concentration: implications for optical wireless communication systems.
    Anand N; Sunilkumar K; Satheesh SK; Krishna Moorthy K
    Appl Opt; 2020 Feb; 59(5):1471-1483. PubMed ID: 32225406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric turbulence characterization with simultaneous measurement of phase, angle of arrival, and intensity in a retroreflected optical link.
    Dix-Matthews BP; Karpathakis SFE; Schediwy SW
    Opt Lett; 2023 Nov; 48(21):5519-5522. PubMed ID: 37910692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of
    Beason M; Potvin G; Sprung D; McCrae J; Gladysz S
    Appl Opt; 2024 Jun; 63(16):E94-E106. PubMed ID: 38856596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical modeling of atmospheric turbulence based on a low-cost experimental setup for measuring
    Carvalho TS; Azzolin CP; Gurgel AF; Carneiro VGA; Giraldi MTMR
    J Opt Soc Am A Opt Image Sci Vis; 2023 Apr; 40(4):C101-C107. PubMed ID: 37132975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-based scintillations for outdoor sound auralization.
    Bresciani APC; Maillard J; de Santana LD
    J Acoust Soc Am; 2023 Aug; 154(2):1179-1190. PubMed ID: 37625161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Detection of Atmospheric Turbulence Profile Using Mie-Scattering Lidar Based on Non-Kolmogorov Turbulence Theory.
    Mao J; Zhang Y; Li J; Gong X; Zhao H; Rao Z
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.