These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38856904)

  • 1. The Dynamic Clamp Technique: A Robust Toolkit for Investigating Potassium Channel Function.
    Bartolucci C; Sala L
    Methods Mol Biol; 2024; 2796():211-227. PubMed ID: 38856904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
    Beattie KA; Hill AP; Bardenet R; Cui Y; Vandenberg JI; Gavaghan DJ; de Boer TP; Mirams GR
    J Physiol; 2018 May; 596(10):1813-1828. PubMed ID: 29573276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents.
    Ma J; Guo L; Fiene SJ; Anson BD; Thomson JA; Kamp TJ; Kolaja KL; Swanson BJ; January CT
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H2006-17. PubMed ID: 21890694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp.
    Mann SA; Heide J; Knott T; Airini R; Epureanu FB; Deftu AF; Deftu AT; Radu BM; Amuzescu B
    J Pharmacol Toxicol Methods; 2019; 100():106599. PubMed ID: 31228558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Dynamic Clamp for Simulation of I
    Becker N; Horváth A; De Boer T; Fabbri A; Grad C; Fertig N; George M; Obergrussberger A
    Curr Protoc Pharmacol; 2020 Mar; 88(1):e70. PubMed ID: 31868992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HERG channel (dys)function revealed by dynamic action potential clamp technique.
    Berecki G; Zegers JG; Verkerk AO; Bhuiyan ZA; de Jonge B; Veldkamp MW; Wilders R; van Ginneken AC
    Biophys J; 2005 Jan; 88(1):566-78. PubMed ID: 15475579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How?
    Verkerk AO; Wilders R
    J Cardiovasc Pharmacol; 2021 Mar; 77(3):267-279. PubMed ID: 33229908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent outward currents through the inward rectifier potassium channel IRK1. The role of weak blocking molecules.
    Ishihara K
    J Gen Physiol; 1997 Feb; 109(2):229-43. PubMed ID: 9041451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic clamp: a powerful tool in cardiac electrophysiology.
    Wilders R
    J Physiol; 2006 Oct; 576(Pt 2):349-59. PubMed ID: 16873403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation properties of Kv4.3 channels: time, voltage and [K+]o dependence.
    Wang S; Bondarenko VE; Qu Y; Morales MJ; Rasmusson RL; Strauss HC
    J Physiol; 2004 Jun; 557(Pt 3):705-17. PubMed ID: 15004209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patch-clamp technique in ESC-derived cardiomyocytes.
    Liu J; Backx PH
    Methods Mol Biol; 2014; 1181():203-14. PubMed ID: 25070339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
    Varró A; Papp JG
    Cardioscience; 1992 Sep; 3(3):131-44. PubMed ID: 1384746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine kinases modulate K+ channel gating in mouse Schwann cells.
    Peretz A; Sobko A; Attali B
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):373-84. PubMed ID: 10457056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in outward K(+) currents on removal of external Ca(2+) in human atrial myocytes.
    Bertaso F; Hendry BM; Donohoe P; James AF
    Biochem Biophys Res Commun; 2000 Jun; 273(1):10-6. PubMed ID: 10873555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic clamp in cardiac and neuronal systems using RTXI.
    Ortega FA; Butera RJ; Christini DJ; White JA; Dorval AD
    Methods Mol Biol; 2014; 1183():327-54. PubMed ID: 25023319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilising Automated Electrophysiological Platforms in Epilepsy Research.
    Milligan CJ; Pachernegg S
    Methods Mol Biol; 2021; 2188():133-155. PubMed ID: 33119850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of potassium channels is relevant for cell survival and migration in a murine bone marrow stromal cell line.
    Silva HB; Rodrigues DC; Andrade R; Teixeira GHGSF; Stelling MP; Ponte CG; Nascimento JHM; Campos de Carvalho AC; Medei E
    J Cell Physiol; 2019 Aug; 234(10):18086-18097. PubMed ID: 30887515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels.
    Pusch M; Bertorello L; Conti F
    Biophys J; 2000 Jan; 78(1):211-26. PubMed ID: 10620287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting cardiac potassium channels for state-of-the-art drug discovery.
    Walsh KB
    Expert Opin Drug Discov; 2015 Feb; 10(2):157-69. PubMed ID: 25400064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.