These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38856917)
1. Characterization of organelle DNA degradation mediated by DPD1 exonuclease in the rice genome-edited line. Islam MF; Yamatani H; Takami T; Kusaba M; Sakamoto W Plant Mol Biol; 2024 Jun; 114(3):71. PubMed ID: 38856917 [TBL] [Abstract][Full Text] [Related]
2. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. Takami T; Ohnishi N; Kurita Y; Iwamura S; Ohnishi M; Kusaba M; Mimura T; Sakamoto W Nat Plants; 2018 Dec; 4(12):1044-1055. PubMed ID: 30420711 [TBL] [Abstract][Full Text] [Related]
3. A conserved, Mg²+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development. Matsushima R; Tang LY; Zhang L; Yamada H; Twell D; Sakamoto W Plant Cell; 2011 Apr; 23(4):1608-24. PubMed ID: 21521697 [TBL] [Abstract][Full Text] [Related]
4. Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease. Tang LY; Matsushima R; Sakamoto W Plant J; 2012 May; 70(4):637-49. PubMed ID: 22239102 [TBL] [Abstract][Full Text] [Related]
5. Tissue-specific organelle DNA degradation mediated by DPD1 exonuclease. Tang LY; Sakamoto W Plant Signal Behav; 2011 Sep; 6(9):1391-3. PubMed ID: 21852754 [TBL] [Abstract][Full Text] [Related]
6. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. Sakamoto W; Takami T J Exp Bot; 2014 Jul; 65(14):3835-43. PubMed ID: 24634485 [TBL] [Abstract][Full Text] [Related]
7. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. Sakamoto W; Takami T Plant Cell Physiol; 2018 Jun; 59(6):1120-1127. PubMed ID: 29860378 [TBL] [Abstract][Full Text] [Related]
8. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. Sakamoto W; Takami T Plant Cell Physiol; 2024 May; 65(4):484-492. PubMed ID: 37702423 [TBL] [Abstract][Full Text] [Related]
9. The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Chen Y; Xu Y; Luo W; Li W; Chen N; Zhang D; Chong K Plant Physiol; 2013 Dec; 163(4):1673-85. PubMed ID: 24144792 [TBL] [Abstract][Full Text] [Related]
10. Li C; Liu CQ; Zhang HS; Chen CP; Yang XR; Chen LF; Liu QS; Guo J; Sun CH; Wang PR; Deng XJ Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375756 [TBL] [Abstract][Full Text] [Related]
11. Rice DNA-Binding One Zinc Finger 24 (OsDOF24) Delays Leaf Senescence in a Jasmonate-Mediated Pathway. Shim Y; Kang K; An G; Paek NC Plant Cell Physiol; 2019 Sep; 60(9):2065-2076. PubMed ID: 31135055 [TBL] [Abstract][Full Text] [Related]
12. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. Lee SH; Sakuraba Y; Lee T; Kim KW; An G; Lee HY; Paek NC J Integr Plant Biol; 2015 Jun; 57(6):562-76. PubMed ID: 25146897 [TBL] [Abstract][Full Text] [Related]
13. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). Zhu X; Guo S; Wang Z; Du Q; Xing Y; Zhang T; Shen W; Sang X; Ling Y; He G BMC Plant Biol; 2016 Jun; 16(1):134. PubMed ID: 27297403 [TBL] [Abstract][Full Text] [Related]
14. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth. Huang J; Zhao X; Cheng K; Jiang Y; Ouyang Y; Xu C; Li X; Xiao J; Zhang Q J Exp Bot; 2013 Aug; 64(11):3351-60. PubMed ID: 23918968 [TBL] [Abstract][Full Text] [Related]
15. Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. Gong P; Luo Y; Huang F; Chen Y; Zhao C; Wu X; Li K; Yang X; Cheng F; Xiang X; Wu C; Pan G Plant Mol Biol; 2019 May; 100(1-2):133-149. PubMed ID: 30843130 [TBL] [Abstract][Full Text] [Related]
16. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Zeng DD; Qin R; Li M; Alamin M; Jin XL; Liu Y; Shi CH Mol Genet Genomics; 2017 Apr; 292(2):385-395. PubMed ID: 28012016 [TBL] [Abstract][Full Text] [Related]
17. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. Liu Y; Cui S; Wu F; Yan S; Lin X; Du X; Chong K; Schilling S; Theißen G; Meng Z Plant Cell; 2013 Apr; 25(4):1288-303. PubMed ID: 23613199 [TBL] [Abstract][Full Text] [Related]
18. OsPPR939, a nad5 splicing factor, is essential for plant growth and pollen development in rice. Zheng P; Liu Y; Liu X; Huang Y; Sun F; Wang W; Chen H; Jan M; Zhang C; Yuan Y; Tan BC; Du H; Tu J Theor Appl Genet; 2021 Mar; 134(3):923-940. PubMed ID: 33386861 [TBL] [Abstract][Full Text] [Related]
19. Functional architecture of two exclusively late stage pollen-specific promoters in rice (Oryza sativa L.). Yan S; Wang Z; Liu Y; Li W; Wu F; Lin X; Meng Z Plant Mol Biol; 2015 Jul; 88(4-5):415-28. PubMed ID: 25991036 [TBL] [Abstract][Full Text] [Related]
20. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. Wang Z; Wang Y; Hong X; Hu D; Liu C; Yang J; Li Y; Huang Y; Feng Y; Gong H; Li Y; Fang G; Tang H; Li Y J Exp Bot; 2015 Feb; 66(3):973-87. PubMed ID: 25399020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]