These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38857234)
21. A mathematical fractal-fractional model to control tuberculosis prevalence with sensitivity, stability, and simulation under feasible circumstances. Farman M; Shehzad A; Nisar KS; Hincal E; Akgul A Comput Biol Med; 2024 Aug; 178():108756. PubMed ID: 38901190 [TBL] [Abstract][Full Text] [Related]
22. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform]. Zhonggang L; Hong Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):981-5. PubMed ID: 17121336 [TBL] [Abstract][Full Text] [Related]
23. Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu Caputo derivative. Nadeem M; He JH; Sedighi HM Math Biosci Eng; 2023 Feb; 20(5):8190-8207. PubMed ID: 37161192 [TBL] [Abstract][Full Text] [Related]
24. On the analysis and deeper properties of the fractional complex physical models pertaining to nonsingular kernels. Fadhal E; Ganie AH; Alharthi NS; Khan A; Fathima D; Elamin AEAMA Sci Rep; 2024 Sep; 14(1):22182. PubMed ID: 39333163 [TBL] [Abstract][Full Text] [Related]
25. Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues. Rashid S; Ashraf R; Asif QU; Jarad F Math Biosci Eng; 2022 Aug; 19(11):11563-11594. PubMed ID: 36124604 [TBL] [Abstract][Full Text] [Related]
26. A computational technique for the Caputo fractal-fractional diabetes mellitus model without genetic factors. Karaagac B; Owolabi KM; Pindza E Int J Dyn Control; 2023 Mar; ():1-18. PubMed ID: 37360279 [TBL] [Abstract][Full Text] [Related]
27. Numerical solution of multi-dimensional time-fractional diffusion problems using an integral approach. Nadeem M; Jabeen S; Alotaibi FM; Alsayaad Y PLoS One; 2024; 19(9):e0304395. PubMed ID: 39312540 [TBL] [Abstract][Full Text] [Related]
28. Ulam-Hyers stability of tuberculosis and COVID-19 co-infection model under Atangana-Baleanu fractal-fractional operator. Selvam A; Sabarinathan S; Senthil Kumar BV; Byeon H; Guedri K; Eldin SM; Khan MI; Govindan V Sci Rep; 2023 Jun; 13(1):9012. PubMed ID: 37268671 [TBL] [Abstract][Full Text] [Related]
29. A fast and efficient hybrid fractal-wavelet image coder. Iano Y; da Silva FS; Cruz AL IEEE Trans Image Process; 2006 Jan; 15(1):98-105. PubMed ID: 16435540 [TBL] [Abstract][Full Text] [Related]
30. Analyzing fractal dynamics employing R. Stadnytska T; Braun S; Werner J Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):117-44. PubMed ID: 20346258 [TBL] [Abstract][Full Text] [Related]
31. Nonlinear analysis of anesthesia dynamics by Fractal Scaling Exponent. Gifani P; Rabiee HR; Hashemi MR; Taslimi P; Ghanbari M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6225-8. PubMed ID: 17946751 [TBL] [Abstract][Full Text] [Related]
32. New optimum solutions of nonlinear fractional acoustic wave equations via optimal homotopy asymptotic method-2 (OHAM-2). Zada L; Nawaz R; Jamshed W; Ibrahim RW; Tag El Din ESM; Raizah Z; Amjad A Sci Rep; 2022 Nov; 12(1):18838. PubMed ID: 36336701 [TBL] [Abstract][Full Text] [Related]
33. Numerical investigation of two-dimensional fuzzy fractional heat problem with an external source variable. Nadeem M; Alotaibi SH; Alotaibi FM; Alsayaad Y PLoS One; 2024; 19(6):e0304871. PubMed ID: 38905310 [TBL] [Abstract][Full Text] [Related]
34. A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. Zhang H; Wei Q; Luo Y IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):937-42. PubMed ID: 18632381 [TBL] [Abstract][Full Text] [Related]
36. Reducing risk of closed loop control of blood glucose in artificial pancreas using fractional calculus. Ghorbani M; Bogdan P Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4839-42. PubMed ID: 25571075 [TBL] [Abstract][Full Text] [Related]
37. Fractal variability: an emergent property of complex dissipative systems. Seely AJ; Macklem P Chaos; 2012 Mar; 22(1):013108. PubMed ID: 22462984 [TBL] [Abstract][Full Text] [Related]
38. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory. Pikkujämsä SM; Mäkikallio TH; Sourander LB; Räihä IJ; Puukka P; Skyttä J; Peng CK; Goldberger AL; Huikuri HV Circulation; 1999 Jul; 100(4):393-9. PubMed ID: 10421600 [TBL] [Abstract][Full Text] [Related]
39. A healthy dose of chaos: Using fractal frameworks for engineering higher-fidelity biomedical systems. Korolj A; Wu HT; Radisic M Biomaterials; 2019 Oct; 219():119363. PubMed ID: 31376747 [TBL] [Abstract][Full Text] [Related]
40. Fractal, entropic and chaotic approaches to complex physiological time series analysis: a critical appraisal. Li C; Ding GH; Wu GQ; Poon CS Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3429-32. PubMed ID: 19963583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]