These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38857662)
1. Porous PLGA microparticles prepared with nanosized/micronized sugar particles as porogens. Zhang C; Bodmeier R Int J Pharm; 2024 Jul; 660():124329. PubMed ID: 38857662 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of PLGA microparticle properties loaded with micronized, nanosized or dissolved drug. Zhang C; Bodmeier R Int J Pharm; 2022 Nov; 628():122313. PubMed ID: 36272513 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Saeedi Garakani S; Davachi SM; Bagher Z; Heraji Esfahani A; Jenabi N; Atoufi Z; Khanmohammadi M; Abbaspourrad A; Rashedi H; Jalessi M Int J Biol Macromol; 2020 Dec; 164():356-370. PubMed ID: 32682976 [TBL] [Abstract][Full Text] [Related]
4. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. Intra J; Salem AK J Drug Target; 2011 Jul; 19(6):393-408. PubMed ID: 20681752 [TBL] [Abstract][Full Text] [Related]
5. Direct drug milling in organic PLGA solution facilitates the encapsulation of nanosized drug into PLGA microparticles. Zhang C; Bodmeier R Eur J Pharm Biopharm; 2023 Oct; 191():1-11. PubMed ID: 37579890 [TBL] [Abstract][Full Text] [Related]
6. Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Kazazi-Hyseni F; Landin M; Lathuile A; Veldhuis GJ; Rahimian S; Hennink WE; Kok RJ; van Nostrum CF Pharm Res; 2014 Oct; 31(10):2844-56. PubMed ID: 24825756 [TBL] [Abstract][Full Text] [Related]
7. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Panyam J; Dali MM; Sahoo SK; Ma W; Chakravarthi SS; Amidon GL; Levy RJ; Labhasetwar V J Control Release; 2003 Sep; 92(1-2):173-87. PubMed ID: 14499195 [TBL] [Abstract][Full Text] [Related]
8. Acceleration of Final Residual Solvent Extraction From Poly(lactide-co-glycolide) Microparticles. Kias F; Bodmeier R Pharm Res; 2024 Sep; 41(9):1869-1879. PubMed ID: 39147990 [TBL] [Abstract][Full Text] [Related]
9. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. Oh YJ; Lee J; Seo JY; Rhim T; Kim SH; Yoon HJ; Lee KY J Control Release; 2011 Feb; 150(1):56-62. PubMed ID: 21070826 [TBL] [Abstract][Full Text] [Related]
10. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795 [TBL] [Abstract][Full Text] [Related]
11. NanoCipro encapsulation in monodisperse large porous PLGA microparticles. Arnold MM; Gorman EM; Schieber LJ; Munson EJ; Berkland C J Control Release; 2007 Aug; 121(1-2):100-9. PubMed ID: 17604870 [TBL] [Abstract][Full Text] [Related]
12. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Blanco D; Alonso MJ Eur J Pharm Biopharm; 1998 May; 45(3):285-94. PubMed ID: 9653633 [TBL] [Abstract][Full Text] [Related]
13. Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation. Biswal AK; P H; Saha S Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110496. PubMed ID: 31923956 [TBL] [Abstract][Full Text] [Related]
14. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Yang Y; Bajaj N; Xu P; Ohn K; Tsifansky MD; Yeo Y Biomaterials; 2009 Apr; 30(10):1947-53. PubMed ID: 19135245 [TBL] [Abstract][Full Text] [Related]
15. Accelerated removal of solvent residuals from PLGA microparticles by alcohol vapor-assisted fluidized bed drying. Kias F; Bodmeier R Int J Pharm; 2024 Nov; 665():124737. PubMed ID: 39307443 [TBL] [Abstract][Full Text] [Related]
16. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. Ekanem EE; Nabavi SA; Vladisavljević GT; Gu S ACS Appl Mater Interfaces; 2015 Oct; 7(41):23132-43. PubMed ID: 26423218 [TBL] [Abstract][Full Text] [Related]
17. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Witschi C; Doelker E J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930 [TBL] [Abstract][Full Text] [Related]
18. Preparation of preformed porous PLGA microparticles and antisense oligonucleotides loading. Ahmed AR; Bodmeier R Eur J Pharm Biopharm; 2009 Feb; 71(2):264-70. PubMed ID: 18840521 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. Bae SE; Son JS; Park K; Han DK J Control Release; 2009 Jan; 133(1):37-43. PubMed ID: 18838089 [TBL] [Abstract][Full Text] [Related]
20. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Nan K; Ma F; Hou H; Freeman WR; Sailor MJ; Cheng L Acta Biomater; 2014 Aug; 10(8):3505-12. PubMed ID: 24793657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]