These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38857675)
1. Microglial Sp1 induced LRRK2 upregulation in response to manganese exposure, and 17β-estradiol afforded protection against this manganese toxicity. Nyarko-Danquah I; Pajarillo E; Kim S; Digman A; Multani HK; Ajayi I; Son DS; Aschner M; Lee E Neurotoxicology; 2024 Jul; 103():105-114. PubMed ID: 38857675 [TBL] [Abstract][Full Text] [Related]
2. The role of microglial LRRK2 kinase in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. Pajarillo E; Kim S; Digman A; Dutton M; Son DS; Aschner M; Lee E J Biol Chem; 2023 Jul; 299(7):104879. PubMed ID: 37269951 [TBL] [Abstract][Full Text] [Related]
3. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. Kim J; Pajarillo E; Rizor A; Son DS; Lee J; Aschner M; Lee E PLoS One; 2019; 14(1):e0210248. PubMed ID: 30645642 [TBL] [Abstract][Full Text] [Related]
4. Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Chen J; Su P; Luo W; Chen J Biochem Biophys Res Commun; 2018 Mar; 498(1):171-177. PubMed ID: 29408508 [TBL] [Abstract][Full Text] [Related]
5. The role of microglial LRRK2 in manganese-induced inflammatory neurotoxicity via NLRP3 inflammasome and RAB10-mediated autophagy dysfunction. Pajarillo E; Kim SH; Digman A; Dutton M; Son DS; Aschner M; Lee E bioRxiv; 2023 Apr; ():. PubMed ID: 37066140 [TBL] [Abstract][Full Text] [Related]
6. The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. Pajarillo E; Rizor A; Son DS; Aschner M; Lee E J Biol Chem; 2020 Mar; 295(10):3040-3054. PubMed ID: 32001620 [TBL] [Abstract][Full Text] [Related]
7. LRRK2 regulates ferroptosis through the system Xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson's disease. Zheng Z; Zhang S; Liu X; Wang X; Xue C; Wu X; Zhang X; Xu X; Liu Z; Yao L; Lu G J Cell Physiol; 2024 May; 239(5):e31250. PubMed ID: 38477420 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity. Ho DH; Seol W; Eun JH; Son IH Biochem Biophys Res Commun; 2017 Jan; 482(4):1088-1094. PubMed ID: 27914807 [TBL] [Abstract][Full Text] [Related]
10. Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models. Liu J; Li T; Thomas JM; Pei Z; Jiang H; Engelender S; Ross CA; Smith WW Hum Mol Genet; 2016 Feb; 25(4):672-80. PubMed ID: 26744328 [TBL] [Abstract][Full Text] [Related]
11. Down-regulation of LRRK2 in control and DAT transfected HEK cells increases manganese-induced oxidative stress and cell toxicity. Roth JA; Eichhorn M Neurotoxicology; 2013 Jul; 37():100-7. PubMed ID: 23628791 [TBL] [Abstract][Full Text] [Related]
12. Regulation of LRRK2 promoter activity and gene expression by Sp1. Wang J; Song W Mol Brain; 2016 Mar; 9():33. PubMed ID: 27004687 [TBL] [Abstract][Full Text] [Related]
13. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Pajarillo E; Johnson J; Kim J; Karki P; Son DS; Aschner M; Lee E Neurotoxicology; 2018 Mar; 65():280-288. PubMed ID: 29183790 [TBL] [Abstract][Full Text] [Related]
14. Leucine-rich repeat kinase 2 modulates neuroinflammation and neurotoxicity in models of human immunodeficiency virus 1-associated neurocognitive disorders. Puccini JM; Marker DF; Fitzgerald T; Barbieri J; Kim CS; Miller-Rhodes P; Lu SM; Dewhurst S; Gelbard HA J Neurosci; 2015 Apr; 35(13):5271-83. PubMed ID: 25834052 [TBL] [Abstract][Full Text] [Related]
15. Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Lee ES; Yin Z; Milatovic D; Jiang H; Aschner M Toxicol Sci; 2009 Jul; 110(1):156-67. PubMed ID: 19383943 [TBL] [Abstract][Full Text] [Related]
16. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Kim C; Beilina A; Smith N; Li Y; Kim M; Kumaran R; Kaganovich A; Mamais A; Adame A; Iba M; Kwon S; Lee WJ; Shin SJ; Rissman RA; You S; Lee SJ; Singleton AB; Cookson MR; Masliah E Sci Transl Med; 2020 Oct; 12(565):. PubMed ID: 33055242 [TBL] [Abstract][Full Text] [Related]
17. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Yin L; Dai Q; Jiang P; Zhu L; Dai H; Yao Z; Liu H; Ma X; Qu L; Jiang J Neurotoxicology; 2018 Jan; 64():195-203. PubMed ID: 28385490 [TBL] [Abstract][Full Text] [Related]
18. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. Marker DF; Puccini JM; Mockus TE; Barbieri J; Lu SM; Gelbard HA J Neuroinflammation; 2012 Nov; 9():261. PubMed ID: 23190742 [TBL] [Abstract][Full Text] [Related]
19. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson's disease progression. Zhou Q; Zhang MM; Liu M; Tan ZG; Qin QL; Jiang YG Aging (Albany NY); 2021 Jan; 13(3):4115-4137. PubMed ID: 33494069 [No Abstract] [Full Text] [Related]
20. The role of posttranslational modifications of α-synuclein and LRRK2 in Parkinson's disease: Potential contributions of environmental factors. Pajarillo E; Rizor A; Lee J; Aschner M; Lee E Biochim Biophys Acta Mol Basis Dis; 2019 Aug; 1865(8):1992-2000. PubMed ID: 30481588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]