BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38858010)

  • 1. Electrodeposition of cellulose nanofibers as an efficient dehydration method.
    Kasuga T; Li C; Mizui A; Ishioka S; Koga H; Nogi M
    Carbohydr Polym; 2024 Sep; 340():122310. PubMed ID: 38858010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hemicellulose hydrolysate addition on the dehydration and redispersion characteristic of cellulose nanofibrils.
    Kim J; Kim J; Jung S; Yun H; Won S; Choi IG; Kwak HW
    Carbohydr Polym; 2024 Jun; 334():122036. PubMed ID: 38553234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of preservatives and evaluation of sterilized cellulose nanofibers for toxicity studies.
    Sai T; Maru J; Obara S; Endoh S; Kajihara H; Fujita K
    J Occup Health; 2020 Jan; 62(1):e12176. PubMed ID: 33159502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Study on the Characterization of Nanofibers with Cellulose I, I/II, and II Polymorphs from Wood.
    Wang H; Li S; Wu T; Wang X; Cheng X; Li D
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaporative Dry Powders Derived from Cellulose Nanofiber Organogels to Fully Recover Inherent High Viscosity and High Transparency of Water Dispersion.
    Yagyu H; Kasuga T; Ogata N; Koga H; Daicho K; Goi Y; Nogi M
    Macromol Rapid Commun; 2023 Sep; 44(17):e2300186. PubMed ID: 37265024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
    Shin S; Hyun J
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26438-26446. PubMed ID: 28737375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tackling the challenge of drying and redispersion of cellulose nanofibrils via membrane-facilitated liquid phase exchange.
    Onyianta AJ; Xu G; Etale A; Eloi JC; Eichhorn SJ
    Carbohydr Polym; 2023 Aug; 314():120943. PubMed ID: 37173032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications.
    Berglund L; Squinca P; Baş Y; Zattarin E; Aili D; Rakar J; Junker J; Starkenberg A; Diamanti M; Sivlér P; Skog M; Oksman K
    Biomacromolecules; 2023 May; 24(5):2264-2277. PubMed ID: 37097826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of residual pectin composition and content on nanocellulose films from ramie fibers: Micro-nano structure and physical properties.
    Luo L; Yu W; Yi Y; Xing C; Zeng L; Yang Y; Wang H; Tang Z; Tan Z
    Int J Biol Macromol; 2023 Aug; 247():125812. PubMed ID: 37453632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Porosity, Water Interaction, and Redispersion of Nanocellulose Hydrogels by Osmotic Dehydration.
    Guccini V; Phiri J; Trifol J; Rissanen V; Mousavi SM; Vapaavuori J; Tammelin T; Maloney T; Kontturi E
    ACS Appl Polym Mater; 2022 Jan; 4(1):24-28. PubMed ID: 35072077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications.
    Ding Q; Xu X; Yue Y; Mei C; Huang C; Jiang S; Wu Q; Han J
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27987-28002. PubMed ID: 30043614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration.
    Ding Q; Zeng J; Wang B; Tang D; Chen K; Gao W
    Carbohydr Polym; 2019 Mar; 207():44-51. PubMed ID: 30600026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of pure cellulose nanofibers as a denture base material.
    Yamazaki Y; Ito T; Ogawa T; Hong G; Yamada Y; Hamada T; Sasaki K
    J Oral Sci; 2020 Dec; 63(1):111-113. PubMed ID: 33298639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties.
    Wang Q; Chen X; Zeng S; Chen P; Xu Y; Nie W; Xia R; Zhou Y
    Int J Biol Macromol; 2023 Jun; 240():124515. PubMed ID: 37085066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of chitin nanofiber-reinforced carboxymethyl cellulose films.
    Hatanaka D; Yamamoto K; Kadokawa J
    Int J Biol Macromol; 2014 Aug; 69():35-8. PubMed ID: 24857869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed-linkage (1,3;1,4)-β-d-glucans as rehydration media for improved redispersion of dried cellulose nanofibrils.
    Zha L; Wang S; Berglund LA; Zhou Q
    Carbohydr Polym; 2023 Jan; 300():120276. PubMed ID: 36372496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the conformation and functionality of poly(N-isopropylacrylamide) (PNIPAM)-grafted nanocellulose hydrogels.
    Raghuwanshi VS; Joram Mendoza D; Browne C; Ayurini M; Gervinskas G; Hooper JF; Mata J; Wu CM; Simon GP; Garnier G
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1609-1619. PubMed ID: 37666193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.