BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38858371)

  • 1. Dynamin-dependent entry of Chlamydia trachomatis is sequentially regulated by the effectors TarP and TmeA.
    Romero MD; Carabeo RA
    Nat Commun; 2024 Jun; 15(1):4926. PubMed ID: 38858371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamin-dependent entry of
    Romero MD; Carabeo RA
    Res Sq; 2023 Sep; ():. PubMed ID: 37841835
    [No Abstract]   [Full Text] [Related]  

  • 3. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion.
    Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468693
    [No Abstract]   [Full Text] [Related]  

  • 4. Distinct roles of the Chlamydia trachomatis effectors TarP and TmeA in the regulation of formin and Arp2/3 during entry.
    Romero MD; Carabeo RA
    J Cell Sci; 2022 Oct; 135(19):. PubMed ID: 36093837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion.
    Faris R; McCullough A; Andersen SE; Moninger TO; Weber MM
    PLoS Pathog; 2020 Sep; 16(9):e1008878. PubMed ID: 32946535
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Scanlon KR; Keb G; Wolf K; Jewett TJ; Fields KA
    Front Cell Infect Microbiol; 2023; 13():1232391. PubMed ID: 37483386
    [No Abstract]   [Full Text] [Related]  

  • 7. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
    Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ
    Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP.
    Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA
    Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis Tarp cooperates with the Arp2/3 complex to increase the rate of actin polymerization.
    Jiwani S; Ohr RJ; Fischer ER; Hackstadt T; Alvarado S; Romero A; Jewett TJ
    Biochem Biophys Res Commun; 2012 Apr; 420(4):816-21. PubMed ID: 22465117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.
    Lane BJ; Mutchler C; Al Khodor S; Grieshaber SS; Carabeo RA
    PLoS Pathog; 2008 Mar; 4(3):e1000014. PubMed ID: 18383626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydial TARP is a bacterial nucleator of actin.
    Jewett TJ; Fischer ER; Mead DJ; Hackstadt T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15599-604. PubMed ID: 17028176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during
    Ghosh S; Ruelke EA; Ferrell JC; Bodero MD; Fields KA; Jewett TJ
    Infect Immun; 2020 Apr; 88(5):. PubMed ID: 32152196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.
    Jiwani S; Alvarado S; Ohr RJ; Romero A; Nguyen B; Jewett TJ
    J Bacteriol; 2013 Feb; 195(4):708-16. PubMed ID: 23204471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A post-invasion role for
    Pedrosa AT; Murphy KN; Nogueira AT; Brinkworth AJ; Thwaites TR; Aaron J; Chew TL; Carabeo RA
    J Biol Chem; 2020 Oct; 295(43):14763-14779. PubMed ID: 32843479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK.
    McKuen MJ; Mueller KE; Bae YS; Fields KA
    Infect Immun; 2017 Dec; 85(12):. PubMed ID: 28970272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion.
    Thwaites T; Nogueira AT; Campeotto I; Silva AP; Grieshaber SS; Carabeo RA
    J Biol Chem; 2014 Oct; 289(44):30426-30442. PubMed ID: 25193659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling.
    Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH
    PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector.
    Ghosh S; Park J; Thomas M; Cruz E; Cardona O; Kang H; Jewett T
    Biochem Biophys Res Commun; 2018 Jun; 500(2):423-428. PubMed ID: 29660331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The
    Aranjuez GF; Kim J; Jewett TJ
    Front Cell Infect Microbiol; 2022; 12():811407. PubMed ID: 35300377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex kinase requirements for Chlamydia trachomatis Tarp phosphorylation.
    Mehlitz A; Banhart S; Hess S; Selbach M; Meyer TF
    FEMS Microbiol Lett; 2008 Dec; 289(2):233-40. PubMed ID: 19016873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.