These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38858437)

  • 1. Evaluating lignin degradation under limited oxygen conditions by bacterial isolates from forest soil.
    Sumranwanich T; Amosu E; Chankhamhaengdecha S; Phetruen T; Loktumraks W; Ounjai P; Harnvoravongchai P
    Sci Rep; 2024 Jun; 14(1):13350. PubMed ID: 38858437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic analysis of
    Morya R; Kumar M; Singh SS; Thakur IS
    Biotechnol Biofuels; 2019; 12():277. PubMed ID: 31788027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential.
    Bandounas L; Wierckx NJ; de Winde JH; Ruijssenaars HJ
    BMC Biotechnol; 2011 Oct; 11():94. PubMed ID: 21995752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds.
    Tian JH; Pourcher AM; Peu P
    Lett Appl Microbiol; 2016 Jul; 63(1):30-7. PubMed ID: 27125750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of ligninolytic Klebsiella spp. strains associated with soil and freshwater.
    Melo-Nascimento AODS; Treumann C; Neves C; Andrade E; Andrade AC; Edwards R; Dinsdale E; Bruce T
    Arch Microbiol; 2018 Oct; 200(8):1267-1278. PubMed ID: 29947838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase.
    Yang C; Yue F; Cui Y; Xu Y; Shan Y; Liu B; Zhou Y; Lü X
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):913-927. PubMed ID: 30051274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin Degradation by
    Tu Z; Geng A; Xiang Y; Zayas-Garriga A; Guo H; Zhu D; Xie R; Sun J
    Molecules; 2024 May; 29(10):. PubMed ID: 38792038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and description of carbazole-degrading bacteria.
    Shotbolt-Brown J; Hunter DW; Aislabie J
    Can J Microbiol; 1996 Jan; 42(1):79-82. PubMed ID: 8595601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing.
    Wilhelm RC; Singh R; Eltis LD; Mohn WW
    ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential.
    Akita H; Kimura Z; Mohd Yusoff MZ; Nakashima N; Hoshino T
    Springerplus; 2016; 5():596. PubMed ID: 27247892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.
    Woo HL; Hazen TC; Simmons BA; DeAngelis KM
    Syst Appl Microbiol; 2014 Feb; 37(1):60-7. PubMed ID: 24238986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass.
    Maki ML; Idrees A; Leung KT; Qin W
    J Mol Microbiol Biotechnol; 2012; 22(3):156-66. PubMed ID: 22832891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria.
    Větrovský T; Steffen KT; Baldrian P
    PLoS One; 2014; 9(2):e89108. PubMed ID: 24551229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.
    Yang YS; Zhou JT; Lu H; Yuan YL; Zhao LH
    Biodegradation; 2011 Sep; 22(5):1017-27. PubMed ID: 21350882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants.
    Li X; Peng D; Zhang Y; Ju D; Guan C
    Ecotoxicol Environ Saf; 2020 Sep; 201():110804. PubMed ID: 32502907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biodegradation of anthracene in acidic soil by inoculated Burkholderia sp. VUN10013.
    Somtrakoon K; Suanjit S; Pokethitiyook P; Kruatrachue M; Lee H; Upatham S
    Curr Microbiol; 2008 Aug; 57(2):102-6. PubMed ID: 18379840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.
    Liu J; Wang X; Zhang T; Li X
    Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China.
    Yang CX; Wang T; Gao LN; Yin HJ; Lü X
    J Appl Microbiol; 2017 Dec; 123(6):1447-1460. PubMed ID: 28801977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of nicotine by newly isolated Pseudomonas sp. CS3 and its metabolites.
    Wang HH; Yin B; Peng XX; Wang JY; Xie ZH; Gao J; Tang XK
    J Appl Microbiol; 2012 Feb; 112(2):258-68. PubMed ID: 22129149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.