These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38858438)

  • 1. Cost-effective method for computational prediction of thermal conductivity in optical materials based on cubic oxides.
    Santonocito A; Patrizi B; Pirri A; Vannini M; Toci G
    Sci Rep; 2024 Jun; 14(1):13343. PubMed ID: 38858438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achievements and Future Perspectives of the Trivalent Thulium-Ion-Doped Mixed-Sesquioxide Ceramics for Laser Applications.
    Pirri A; Maksimov RN; Li J; Vannini M; Toci G
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Atom Off-Centering in Diamondoid Solid Solutions Causes Crystallographic Distortion and Suppresses Lattice Thermal Conductivity.
    Xie H; Li Z; Liu Y; Zhang Y; Uher C; Dravid VP; Wolverton C; Kanatzidis MG
    J Am Chem Soc; 2023 Feb; 145(5):3211-3220. PubMed ID: 36701174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alloying effect on the lattice thermal conductivity of MNiSn half-Heusler alloys.
    Rabin D; Fuks D; Gelbstein Y
    Phys Chem Chem Phys; 2022 Dec; 25(1):520-528. PubMed ID: 36477717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon.
    Chen Y; Lukes JR; Li D; Yang J; Wu Y
    J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative thermal expansion of Cu
    Linnera J; Erba A; Karttunen AJ
    J Chem Phys; 2019 Nov; 151(18):184109. PubMed ID: 31731874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic, optical, mechanical, and thermal properties of diphenylacetylene-based graphyne nanosheet using density functional theory.
    Mohebbi E; Seyyed Fakhrabadi MM
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34157684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds.
    Hong AJ; Li L; He R; Gong JJ; Yan ZB; Wang KF; Liu JM; Ren ZF
    Sci Rep; 2016 Mar; 6():22778. PubMed ID: 26947395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressed Lone Pair Electrons Explain Unconventional Rise of Lattice Thermal Conductivity in Defective Crystalline Solids.
    Jang H; Toriyama MY; Abbey S; Frimpong B; Snyder GJ; Jung YS; Oh MW
    Adv Sci (Weinh); 2024 Jun; 11(24):e2308075. PubMed ID: 38626376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AgCl Addition to Chalcopyrite Compound for Ultra-Low Thermal Conductivity in Realizing High ZT Thermoelectric Materials.
    Zhang Z; Luo S; Yu L; Wei S; Ji Z; Li W; Ang LK; Zheng S
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35178-35185. PubMed ID: 37432880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic Moduli: a Tool for Understanding Chemical Bonding and Thermal Transport in Thermoelectric Materials.
    Isotta E; Peng W; Balodhi A; Zevalkink A
    Angew Chem Int Ed Engl; 2023 Mar; 62(12):e202213649. PubMed ID: 36516061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites.
    Elalfy L; Music D; Hu M
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning based prediction of lattice thermal conductivity for half-Heusler compounds using atomic information.
    Miyazaki H; Tamura T; Mikami M; Watanabe K; Ide N; Ozkendir OM; Nishino Y
    Sci Rep; 2021 Jun; 11(1):13410. PubMed ID: 34183699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon mode contributions to thermal conductivity of pristine and defective β-Ga
    Yan Z; Kumar S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29236-29242. PubMed ID: 30427340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT Insights into MAX Phase Borides Hf
    Islam J; Islam MD; Ali MA; Akter H; Hossain A; Biswas M; Hossain MM; Uddin MM; Naqib SH
    ACS Omega; 2023 Sep; 8(36):32917-32930. PubMed ID: 37720781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of phonon anisotropy on thermal conductivity of fluorite oxides.
    Adnan S; Jin M; Bryan MS; Manley ME; Hurley DH; Khafizov M
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37187190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD; Liu BG
    J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the Structural, Electronic, Elastic, Optical, and Magnetic Properties of Cubic Fluoroperovskites
    Shah SA; Husain M; Rahman N; Sohail M; Khan R; Alataway A; Dewidar AZ; Elansary HO; Abu El Maati L; Yessoufou K; Ullah A; Khan A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations on the thermoelectric and thermodynamic properties of quaternary coinage metal HgSBr.
    M H; R D E
    Heliyon; 2023 Sep; 9(9):e19438. PubMed ID: 37810057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.